solve these questions
Answers
1
Sin²© + Cos²© = 1
1 - Sin²© = Cos²©
1 - Cos²© = Sin²©
( the symbol © is used as theta)
Answer:
Hope it helps!! Mark this answer as brainliest if u found it useful and follow me for quick and accurate answers...
Step-by-step explanation:
1-i) sin^2 theta
1-ii) cos^2 theta
1-iii) cos^2 theta
2) sec^2 x+ cosec^2 x = sec^2 x cosec^2 x
LHS = sec^2 x+ cosec^2 x
=> 1/cos^2 theta + 1/sin^2 theta
=> sin^2 theta + cos^2 theta / sin^2 theta * cos^2 theta
=> 1/sin^2 theta * 1/cos^2 theta
=> cosec^2 theta * sec^2 theta
hence proved
3) k = sec^2 theta (1 + sin theta)(1 - sin theta)
k = sec^2 theta (1 - sin^2 theta)......... [(a+b)(a-b) = (a^2-b^2)]
k = sec^2 theta * cos^2 theta
k = 1/cos^2 theta * cos^2 theta
Cancelling cos^2 theta
=> k=1
4)
cos x =
sec x = 1/cosx = 1/
tan x = sinx/cosx = sinx/
cosec x = 1/sinx
cot x = cosx / sinx = / sinx