Math, asked by Anonymous, 11 months ago

Solve these questions. I will Mark me Brainliest ​​

Attachments:

Answers

Answered by Cynefin
38

━━━━━━━━━━━━━━━━━━━━

✺Question

 \rm{\Large{ \rightarrow \: 3 \sqrt{147}  -  \frac{7}{3} \sqrt{ \frac{1}{3} }   +   7\sqrt{ \frac{1}{3} }}}

━━━━━━━━━━━━━━━━━━━━

Explanation of Q.

The above equation contains three terms with square roots but they are not in simplied terms. So first we need to simplify them, to reduce calculation.

I am simplying the terms individually. Let,

   \oplus{\large{ \:  \: \boxed{ \rm{ \red{3 \sqrt{147} }}}} -    \boxed{ \rm{ \red{\frac{7}{3}  \sqrt{ \frac{1}{3} } }}} \:  +  \:  \boxed{ \rm{ \red{7 \sqrt{ \frac{1}{3} } }}}} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \:  \downarrow \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \downarrow \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \downarrow \\  \rm{\large{ \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   A \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:   B \:  \:  \:  \:  \:   \:  \:   \:  \:  \:  \:  \:  \:  \: C}}}

━━━━━━━━━━━━━━━━━━━━

✺Simplying Each term = A, B, C

 \huge{ \rm{ \underline{ \underline{ \green{A}}}}} \\  \\  \rm{\large{ \rightarrow \: 3 \sqrt{147} }} \\  \\  \rm{\large{ \rightarrow \: 3 \sqrt{7 \times 7 \times 3} }} \\  \\  \rm{\large{ \rightarrow \: 3 \times 7 \sqrt{3} }} \\  \\  \rm{\large{ \rightarrow \boxed{ \: 21 \sqrt{3} }}}

━━━━━━━━━━━━━━━━━━━━

\huge{ \underline{ \underline{ \green{ \rm{B}}}}} \\  \\  \rm{\large{ \rightarrow \:  \frac{7}{3}  \sqrt{ \frac{1}{3} } }} \\  \\  \rm{\large{ \odot{\purple{ \:  rationalizing \: factor \: of \:  \sqrt{3}  =  \sqrt{3} }}}} \\  \\  \rm{\large{ \rightarrow \:  \frac{7}{3}  \sqrt{ \frac{1}{3} }  \times   \frac{ \sqrt{3} }{ \sqrt{3} } }} \\  \\  \rm{\large{ \rightarrow \:  \frac{7}{3}  \times  \frac{ \sqrt{3} }{3} }} \\  \\  \rm{\large{ \rightarrow \: \boxed{  \frac{7 \sqrt{3} }{9} }}}

━━━━━━━━━━━━━━━━━━━━

\huge{ \underline{ \underline{ \green{ \rm{C}}}}} \\  \\  \rm{\large{ \rightarrow \: 7 \sqrt{ \frac{1}{3} }}} \\  \\  \rm{\large{ \odot{\purple{ \: similarly \: as \: b}}}} \\  \\  \rm{\large{ \rightarrow \: 7 \sqrt{ \frac{1}{3} } \times  \frac{ \sqrt{3} }{ \sqrt{3} } }} \\  \\  \rm{\large{ \rightarrow \:  \boxed{ \frac{7 \sqrt{3} }{3} }}}

━━━━━━━━━━━━━━━━━━━━

Final Solution:

We had our equation,

 \rm{\large{ \rightarrow \: 3 \sqrt{147}  -   \frac{7}{3}  \sqrt{ \frac{1}{3} }  +  \frac{7 \sqrt{3} }{3} }} \\  \\  \rm{\large{ \green{ \rightarrow \: A - B+ C}}}

After simplification,

 \rm{\large{ \rightarrow \: 21 \sqrt{3}  -  \frac{7 \sqrt{3} }{9}  +  \frac{7 \sqrt{3} }{3} }} \\  \\  \rm{\large{ \odot{\purple{ \: taking \:  \sqrt{3} \:  as \: common}}}} \\  \\  \rm{\large{ \rightarrow \:  \sqrt{3} ( 21 -  \frac{7}{9}  +  \frac{7}{3}) }} \\  \\  \rm{\large{ \rightarrow \:  \sqrt{3} ( \frac{189 - 7 + 21}{9} }}) \\  \\  \rm{\large{ \rightarrow \:   \sqrt{3} ( \frac{210 - 7}{9} }}) \\  \\  \rm{\large{ \rightarrow \:  \boxed{ \frac{203 \sqrt{3} }{9} }}}

━━━━━━━━━━━━━━━━━━━━

Final Answer:

 \huge{ \rm{ \boxed{ =  \:  \:  \frac{203 \sqrt{3} }{9} }}}

━━━━━━━━━━━━━━━━━━━━

Answered by TheSentinel
35

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

 \rm{ 3 \sqrt{147}  -  \frac{7}{3} \sqrt{ \frac{1}{3} }   +   7\sqrt{ \frac{1}{3} }}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\green{ \boxed{\orange{  \implies \frac{203 \sqrt{3} }{9} }}}}

________________________________________

\pink{\underline{\underline{\blue{\boxed{\boxed{\red{\star{\sf Solution:}}}}}}}} \\ \\

\rm{Let's \ simplify \ the \  terms \  individually. } \\ \\

\rm{Let,}

\boxed{ \rm{ \blue{3 \sqrt{147} }}} -    \boxed{ \rm{ \blue{\frac{7}{3}  \sqrt{ \frac{1}{3} } }}} \:  +  \:  \boxed{ \rm{ \blue{7 \sqrt{ \frac{1}{3} } }}} \\  \:  \:  \:    \:  \:  \:  \:  \: \:  \downarrow \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \:  \:  \:  \:   \downarrow \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \downarrow \\  \rm{ \:  \:  \:  \:   \:  \:   \:  \:   1 \:  \:  \:  \:  \:  \: \: \: \: \: \: \: \: \:  \:  \:  \:     \:  \:   2 \:  \:  \:  \:   \: \:  \: \: \:  \:  \: \: \: \:   \:  \:  \: 3}

\rm{Simplying \ Each \  term \ = \implies \   1, \ 2, \ 3,}

\rm{\green{\boxed{ \underline{ \purple{1}}}}} \\  \\

\rm{ \implies \: 3 \sqrt{147} } \\  \\

\rm{\implies{ \: 3 \sqrt{7 \times 7 \times 3} }} \\  \\

\rm{\implies{  \: 3 \times 7 \sqrt{3} }} \\  \\

\rm{\implies{\pink{\boxed{ \: 21 \sqrt{3} }}}}

__________________________________

\rm{\green{\boxed{ \underline{ \purple{2}}}}} \\  \\

\rm{\implies{ \:  \frac{7}{3}  \sqrt{ \frac{1}{3} } }} \\  \\  \rm{\implies{ \:  rationalizing \: factor \: of \:  \sqrt{3}  =  \sqrt{3} }} \\  \\  \rm{\implies{ \:  \frac{7}{3}  \sqrt{ \frac{1}{3} }  \times   \frac{ \sqrt{3} }{ \sqrt{3} } }} \\  \\  \rm{\implies{  \:  \frac{7}{3}  \times  \frac{ \sqrt{3} }{3} }} \\  \\  \rm{\implies{\pink{ \boxed{  \frac{7 \sqrt{3} }{9} }}}}

__________________________________

\rm{\green{\boxed{ \underline{ \purple{2}}}}} \\  \\

\rm{\implies{  \: 7 \sqrt{ \frac{1}{3} }}} \\  \\  \rm{\implies{\orange{ \: similarly \: as \: b}}} \\  \\  \rm{\implies{  \: 7 \sqrt{ \frac{1}{3} } \times  \frac{ \sqrt{3} }{ \sqrt{3} } }} \\  \\  \rm{ \implies{\boxed{ \frac{7 \sqrt{3} }{3} }}}

__________________________________

\rm{We \  had \ equation,}

 \rm{\implies{  \: 3 \sqrt{147}  -   \frac{7}{3}  \sqrt{ \frac{1}{3} }  +  \frac{7 \sqrt{3} }{3} }} \\  \\  \rm{ \green{ \implies \: 1 - 2+ 3}} \\ \\

\rm{After \ simplification, }

\rm{We \ get }

 \rm{ \implies \: 21 \sqrt{3}  -  \frac{7 \sqrt{3} }{9}  +  \frac{7 \sqrt{3} }{3} } \\  \\  \rm{\implies{ \: taking \:  \sqrt{3} \:  as \: common}} \\  \\  \rm{\implies{  \:  \sqrt{3} ( 21 -  \frac{7}{9}  +  \frac{7}{3}) }} \\  \\  \rm{\implies{  \:  \sqrt{3} ( \frac{189 - 7 + 21}{9}) }} \\  \\  \rm{\implies{  \:   \sqrt{3} ( \frac{210 - 7}{9} )} } \\  \\  \rm{\implies{ \frac{203 \sqrt{3} }{9} }}

\rm\green{Final \ answer:}

\rm{\green{ \boxed{\orange{ \implies \frac{203 \sqrt{3} }{9} }}}}

_________________________________________

\rm\red{Hope \ it \ helps \ :))}

Similar questions