Math, asked by Anonymous, 7 months ago

solve these questions with explanation. ​

Attachments:

Answers

Answered by Anonymous
42

 \orange{ \rm{Solution:- }}

 \small{ \rm{ \green{4.5  - \frac{1}{2}  \: of \: (7.6 - 3.5) + 2.3 \times 4.05}}}

\small{ \rm{ \green{ = 4.5  - \frac{1}{2}  \: of \: (4.1) + 2.3 \times 4.05}}}

\small{ \rm{ \green{ = 4.5 -  \frac{1}{2}  \times 4.1 + 2.3  \times 4.05}}}

\small{ \rm{ \green{ = 4.5 -  \frac{4.1}{2}  + 2.3  \times  4.05}}}

\small{ \rm{ \green{ = 4.5 -  \frac{4.1}{2}  + 9.315}}}

\small{ \rm{ \green{ = 4.5 - 2.05 + 9.315 }}}

\small{ \rm{ \green {= 13.815 - 2.05}}}

\small{ \rm{ \green{ \underline{ \boxed{ = 11.765}}}}}

Therefore, By simplifying the question we get 11.765.

▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭

 \orange{ \rm{Solution:- }}

\small{ \rm{ \green{ {25}^{n - 1}  + 100 =  {5}^{2n - 1}}}}

\small{ \rm{ \green{ {5}^{2(n - 1)}  + 100 =  {5}^{2n - 1}}}}

\small{ \rm{ \green{ {5}^{2n - 2}  + 100 =  {5}^{2n - 1}}}}

\small{ \rm{ \green{ {5}^{2n - 2}  -  {5}^{2n - 1}  =  - 100}}}

\small{ \rm{ \green{ {5}^{2n} ( {5}^{ - 2}  -  {5}^{ - 1})  =  - 100}}}

\small{ \rm{ \green{ {5}^{2n} ( \frac{1}{25}  -  \frac{1}{5} ) =  - 100}}}

\small{ \rm{ \green{ {5}^{2n}  \times   \frac{ - 4}{25}  =  - 100}}}

 \small{ \rm{ \green{{5}^{2n}  \times  - 4 =  - 100 \times 25}}}

\small{ \rm{ \green{ {5}^{2n}  =  \frac{ - 100 \times 25}{( - 4)}}}}

\small{ \rm{ \green{ {5}^{2n}  = 625}}}

\small{ \rm{ \green{ {5}^{2n}  =  {5}^{4}}}}

When, bases are same POWERS are equal.

\small{ \rm{ \green{2n = 4}}}

\small{ \rm{ \green{n =  \frac{4}{2}}}}

\small{ \rm{ \green{ \underline{ \boxed{n = 2}}}}}

▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭

 \orange{ \rm{Solution:- }}

\small{ \rm{ \green{m -  \frac{m - 1}{2}  = 1 -  \frac{m - 2}{3} }}}

\small{ \rm{ \green{ \frac{m}{1} -  \frac{m - 1}{2}   +  \frac{m - 2}{3}  = 1}}}

Taking LCM,

\small{ \rm{ \green{ \frac{m \times  \frac{6}{1}  - (m - 1) \frac{6}{2}  + ( m- 2) \frac{6}{3} }{6}  = 1}}}

\small{ \rm{ \green{ \frac{6m - (m - 1)3 + (m - 2)2}{6}  = 1}}}

\small{ \rm{ \green{ \frac{6m - 3m - 3 \times  - 1 + 2m - 2 \times 2}{6}  = 1}}}

\small{ \rm{ \green{6m - 3m - 3 + 2m - 4 = 1 \times 6}}}

\small{ \rm{ \green{3m + 2m - 1 = 6}}}

\small{ \rm{ \green{5m = 6 + 1}}}

\small{ \rm{ \green{5m = 7}}}

\small{ \rm{ \green{ \underline{ \boxed{m =  \frac{7}{5}}}}}}

Let's Verify it,

L.H.S,

\small{ \rm{ \green{m -  \frac{m - 1}{2} }}}

\small{ \rm{ \green{  = \frac{7}{5}  -   \frac{ \frac{7 }{5} - 1 }{2} }}}

\small{ \rm{ \green{ =  \frac{7}{5}  -  \frac{ \frac{7 - 5}{5} }{2}}}}

\small{ \rm{ \green{ =  \frac{7}{5}  -  \frac{2}{10}}}}

\small{ \rm{ \green{ =  \frac{7}{5}  -  \frac{1}{5}  =  \frac{6}{5}}}}

R.H.S,

\small{ \rm{ \green{1 -  \frac{m - 2}{3}}}}

\small{ \rm{ \green{ = 1 -  \frac{ \frac{7}{5}  - 2}{3}}}}

\small{ \rm{ \green{ = 1 -   \frac{ \frac{7 - 2(5)}{5} }{3}}}}

\small{ \rm{ \green{ = 1 -  \frac{  \frac{7 - 10}{5} }{3}}}}

\small{ \rm{ \green{ = 1 -  \frac{  - \frac{3}{5} }{5} }}}

\small{ \rm{ \green{ = 1 +  \frac{3}{15} }}}

\small{ \rm{ \green{ = 1 +  \frac{1}{5}}}}

\small{ \rm{ \green = { \green{  \underline { \boxed{ \frac{6}{5}}}}}}}

L.H.S = R.H.S

Hence, Verified!!

▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭

 \orange{ \rm{Solution:- }}

This question can be done in Two ways....

First,

Let AB & CD be two lines.

\small{ \rm{ \green{ \angle1 +  \angle4 = 180 \degree(</strong><strong>CD</strong><strong> \: is \: a \: straight \: line)}}}

\small{ \rm{ \green{ \angle4 +  \angle3 = 180 \degree(</strong><strong>AB</strong><strong> \: is \: a \: straight \: line</strong><strong>)</strong><strong>}}}

\small{ \rm{ \green{ \angle1 + \angle 4 =  \angle4  +  \angle3}}}

\small{ \rm{ \green{ \angle1 =  \angle3 }}}

Similarly,

\small{ \rm{ \green{ \angle2 =  \angle4}}}

Hence, Proved!!

N.B : Refer the fig.1 in attachment.

Second,

Vertically opposite angles are equal. As angles x and y are on a straight line,

\small{ \rm{ \green{ \therefore{ \angle  x + \angle y = 180 \degree}}{\:  \: ..... (1)}}}

\small{ \rm{ \green{ \therefore{ \angle y  +  \angle z = 180 \degree}}} \:  \: .....(2)}

Thus, from eq (1) and (2), we get:

 \small{ \rm{ \green{\angle  x + \angle y =  \angle y + \angle z}}}

 \small{ \rm{ \green{ \therefore{ \angle x =  \angle z}}}}

Similarly, We can prove:

\small{ \rm{ \green{ \angle y =  \angle w}}}

N.B :- Refer the fig.2 in the attachment.

▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭

Attachments:
Answered by Anonymous
102

 \sf\green{ QUESTION :- }

Simplify : 4.5 - ½ of ( 7.6 - 3.5 ) + 2.3 × 4.05

 \sf\blue{ ANSWER :- }

4.5 - ½ of ( 7.6 - 3.5 ) + 2.3 × 4.05

↝ 4.5 - ½ × ( 7.6 - 3.5 ) + 2.3 × 4.05

↝4.5 - ½ × ( 4.1 ) + 9.315

↝4.5 - 0.5 × ( 4.1 ) + 9.315

↝4.5 - 2.05 + 9.315

↝4.5 +7.265

↝11.765

so, 4.5 - ½ of ( 7.6 - 3.5 ) + 2.3 × 4.05 = 11.765

__________________________________________

 \sf\green{ QUESTION :- }

if 25 ^n-1 + 100 = 5 ^2n-1 , find the value of n

 \sf\blue{ ANSWER :- }

 \tt{25}^{n - 1}  + 100 =  {5}^{2n - 1}

 \tt {(5}^{2} ) ^{n - 1}  + 100 =  {5}^{2n - 1}

  \tt {5}^{2 \times n - 2}  + 100 =  {5}^{2n - 1}

  \tt  \dfrac{ {5}^{2n} }{ {5}^{2} }  + 100 =  \dfrac{ {5}^{2n} }{ {5} }

  \tt 100 =  \dfrac{ {5}^{2n} }{ {5}}   -   \dfrac{ {5}^{2n} }{ {25} }

  \tt 100 =  \dfrac{ {25 - 5}^{2n} -  {5.5}^{2n}  }{ {25 \times 5}}

  \tt 100 =  \dfrac{ { 5}^{2n} (25 - {5})  }{ {25 \times 5}}

  \tt { 5}^{2n} =  \dfrac{ 25 \times 5 \times 100 }{ 20}    = 5 \times 5 \times 5 \times 5

 \tt { 5}^{2n} =  {5}^{4}

Now , bases are same

so, powers are equal

 \tt2n = 4

 \tt n =  \dfrac{4}{2}  = 2

N = 2

__________________________________________

 \sf\green{ QUESTION :- }

solve for m : m - m-1/2 = 1 - m-2/3 and verify the result

 \sf\blue{ ANSWER :- }

 \tt m -  \dfrac{m - 1}{2}  = 1 -  \dfrac{m - 2}{3}

 \tt  \dfrac{m}{1}  -  \dfrac{m - 1}{2}   +   \dfrac{m - 2}{3} = 1

 \tt  \dfrac{6m - 3(m - 1) + 2(m - 2)}{6}  = 1

 \tt  \dfrac{6m - 3m  + 3+ 2m - 4}{6}  = 1

 \tt  \dfrac{5m - 1}{6}  = 1

 \tt  {5m - 1} = 6

 \tt  5m  = 6 + 1

 \tt  5m  =7

 \tt  m  = \dfrac{7}{5}

To check

 \tt \dfrac{7}{5}  -  \dfrac{ \dfrac{7}{5} - 1 }{2}  = 1 - \dfrac{ \dfrac{7}{5} - 2}{3}

 \tt \dfrac{7 }{5}  -  \dfrac{ \dfrac{7 - 5}{5}  }{2}  = 1 - \dfrac{ \dfrac{7 - 10}{5} }{3}

 \tt \dfrac{7 }{5}  -  \dfrac{ 2  }{5 \times 2}  = 1 - \dfrac{ -  3 }{5 \times 3}

 \tt \dfrac{7 }{5}  -  \dfrac{1}{5}  = 1  +  \dfrac{ 1 }{5 }

 \tt \dfrac{7 - 1 }{5}  = \dfrac{5 +  1 }{5 }

 \tt \dfrac{6 }{5}  = \dfrac{6 }{5 }

LHS = RHS

Therefore, it is correct

__________________________________________

 \sf\green{ QUESTION :- }

prove that if two lines intersect then the vertically opposite angles are equal

 \sf\blue{ ANSWER :- }

★ Note :- See the attachment

Given -

AB and CD intersect at O

To Prove -

∠ AOC = ∠ BOD

∠ AOD = ∠ BOC

Prove -

∠ AOD + ∠ AOC = 180............(1)

∠ AOD + ∠ BOD = 180............(2)

1 & 2 ;

∠ AOD + ∠ AOC = ∠ AOD + ∠ BOD

∠ AOD will cancelled

∠ AOC = ∠ BOD

NOW,

AOD + ∠ AOC = 180............(3)

∠ AOC + ∠ BOC = 180............(4)

3 & 4 ;

∠ AOD + ∠ AOC = ∠ AOC + ∠ BOC

★ ∠ AOC will cancelled

∠ AOD = ∠ BOC

therefore, vertically opposite angles are equal

Attachments:
Similar questions