Math, asked by Anonymous, 1 month ago

solve these three questions ...



only revelant ans . needed​

Attachments:

Answers

Answered by XxMrZombiexX
121

question

 \bf \: simplify  :  \sqrt{3 + 2 \sqrt{2} }.

solution

\longmapsto \tt  \sqrt{3 + 2 \sqrt{2} }  \\  \\  \\\longmapsto \tt  \sqrt{1 + 2 \sqrt{2}  + 2}   \\  \\  \\

 \longmapsto \tt  \sqrt{ {1}^{2}  +( 2  \times 1 \times  \sqrt{2}) +  {( \sqrt{2} )}^{2}  }  \qquad \{ {a}^{2}  +  {b}^{2}  - 2ab = (a + b {)}^{2}  \} \\  \\

\longmapsto \tt  \cancel {\sqrt{(1 +  { \sqrt{2}) }^{ \cancel2} } } \\  \\  \\ \longmapsto \tt  \red{1 +  \sqrt{2} } \:  \:  \:  \: answer

____________________

question

 \bf \: simplify:  \sqrt{3 - 2 \sqrt{2} } .

solution

\longmapsto \tt  \sqrt{3 - 2 \sqrt{2} }  \\  \\  \\ \longmapsto \tt  \sqrt{3 - 2 \sqrt{2  \times 1} }  \\  \\  \\

\longmapsto \tt  \sqrt{ {( \sqrt{2} }^{2}) +  {(1)}^{2}   - 2( \sqrt{2})(1) }  \:  \:  \:  \{ {a}^{2}  +  {b}^{2}  - 2ab =  {(a + b)}^{2}  \} \\  \\  \\

\longmapsto \tt  \cancel{ \sqrt{( \sqrt{2} - 1 {)}^{ \cancel2}  } } \\  \\  \\ \longmapsto \tt  \red{ \sqrt{2}  - 1} \:  \:  \:  \:  \: answer

___________________

question

 \bf \:  \: if \: x = 3 + 2 \sqrt{2}  \:  \: then \: find \: value \: of \:  \sqrt{x}  -  \frac{1}{ \sqrt{x} } .

solution

given that

  • x = 3 + 2 \sqrt{2}

to find

  •  \tt \: the \: value \: of \:  \sqrt{x} -   \dfrac{ 1{} }{ \sqrt{x} }    \:  \:

SOLUTION

\longmapsto \tt  \: x = 3 + 2 \sqrt{2}  \\  \\  \\ \longmapsto \tt x = 1 + 2 \sqrt{2}  + 2 \\ \\  \\ \longmapsto \tt x =  {1}^{2}  + 2 \times 1 \times  \sqrt{2}  +  {( \sqrt{2}) }^{2}  \\  \\  \\\longmapsto \tt  x =  {(1 +  \sqrt{2}) }^{2}  \\  \\  \\ \longmapsto \tt  \sqrt{x}  = 1 +  \sqrt{2}

hence the value of  \tt \red {\: { \sqrt{x} = 1 +  \sqrt{2}  }}

now

 \qquad \qquad \bf \:  \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }  \\  \\  \\  \\ putting \: value \: of \:  \sqrt{x}  =  1 +  \sqrt{2}

we get

 \qquad \qquad \:\longmapsto \tt (1 +  \sqrt{2} ) -  \dfrac{1}{(1 +  \sqrt{2}) }  \\  \\  \\  \qquad \qquad \:\longmapsto \tt  \frac{ {(1 +  \sqrt{2}) }^{2}   - 1}{(1 +  \sqrt{2} )}  \\  \\  \\  \qquad \qquad \:\longmapsto \tt  \frac{1 +  2\sqrt{2} + 2 - 1 }{1 +  \sqrt{2} }  \\  \\  \\ \qquad \qquad \:\longmapsto \tt  \frac{2 \cancel{(1 +  \sqrt{2} )}}{ \cancel{(1 +  \sqrt{2} )}}  \\  \\  \\ \qquad \qquad \:\longmapsto \tt 2

 \large   \tt\:therefore \:  the  \: value \:  of   \red{ \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }  = 2}

Answered by InsaneBanda
145

 \tt\ \ \: 1. \: simplify \:  \tt \sqrt{3 + 2 \sqrt{2} }

 \\

\leadsto\sf\ \sqrt{3 + 2 \sqrt{2} }  \\ \\  \ \leadsto\sf\ \sqrt{1 + 2 \sqrt{2 + 2}  \ } \\  \\  \leadsto\sf\ \sqrt{ {1}^{2}  + (2 \times 1 \times  \sqrt{2}) +  \sqrt{2 {}^{2} }  } \\  \\  \tt \:  {a}^{2}  +  {b}^{2}  - 2ab = (a +  {b}^{2} ) \\  \\ \begin{gathered}\leadsto \sf \cancel {\sqrt{(1 + { \sqrt{2}) }^{ \cancel2} } }  \\ \\ \leadsto \sf \purple{1 + \sqrt{2} } \: \: \: \:is \: the \:  answer\end{gathered}

                    ____________      

 \tt\ \ \: 2. \: simplify \:  \tt \sqrt{3  -  2 \sqrt{2} }

 \\

\leadsto\sf\ \sqrt{3  -  2 \sqrt{2} }  \\ \\  \ \leadsto\sf\ \sqrt{3  - 2 \sqrt{2  \times  1}  \ } \\  \\  \leadsto\sf\ \sqrt{ {( \sqrt{2) {}^{2} + ( {1}^{2}) - 2(  \sqrt{2} )(1)   }  }  } \\  \\  \tt \:  {a}^{2}  +  {b}^{2}  - 2ab = (a +  {b}^{2} ) \\  \\\begin{gathered}\leadsto \sf \cancel {\sqrt{( { \sqrt{2} - 1) }^{ \cancel2} } }  \\ \\ \leadsto \sf \purple{ \sqrt{2} - 1 } \: \: \: \:is \: the \:  answer\end{gathered}

                    ____________      

 \tt\ \ \: 3. \: if \: x = 3 + 2 \sqrt{2}  \: then \: find \: value \: of  \:  \tt \ \:  \sqrt{x}   - \frac{1}{ \sqrt{x} }

 \\

\leadsto\sf\ x = 3 + 2 \sqrt{2}  \\ \\  \ \leadsto\sf\ x = 1 + 2 \sqrt{2} + 2  \\  \\  \leadsto\sf\ \  x =  {1}^{2}  + 2 \times 1 \times  \sqrt{2}  + ( \sqrt{2}) {}^{2}   \\  \\  \leadsto\sf \ \  x = (1 +  \sqrt{2}) {}^{2}   \\ \   \\ \leadsto \sf \  \sqrt{x}  -  \frac{1}{ \sqrt{x} } \ \\   \\ \: \sf \ so\: put \: value \: of \:  \sqrt{x}  =  1 +  \sqrt{2}  \\  \\  \leadsto \sf (1 +  \sqrt{2} ) -  \frac{1}{(1 +  \sqrt{2} )}  \  \ \\ \ \\  \: \leadsto\sf \:  \frac{(1 +  \sqrt{2}) {}^{2} - 1   }{(1 +  \sqrt{2}) }  \\ \\   \leadsto \sf \ \frac{1 + 2 \sqrt{2} + 2 - 1 }{(1 +  \sqrt{2}) }

\begin{gathered}\leadsto \sf \cancel {  \frac{2(1 +  \sqrt{2}) }{(1 +  \sqrt{2}) } } \\ \\  \leadsto \sf\purple{2 } \: \: \: \:  \\  \\ \sf\ therefore \: value \:of \:  \sqrt{x}  -  \frac{1}{ \sqrt{x}  }  = 2 \end{gathered}

                    ____________

Similar questions