Math, asked by mandalsamir05, 2 months ago

Solve theta : 2sin theta cos theta = 2 − sintheta + 4costheta , (−π≤ theta ≤ π).

Maths Aryabhatta

Brainly Stars

Brainly Teacher

Please answer . Don't spam. ​

Answers

Answered by sattwikswain08
0

Answer:

Here's your answer

Step-by-step explanation:

(4+cos

2

θ)(2−sin

2

θ)

sinθ

Lety x=cosθ⇒dx=−sinθdθ

−∫

(4+x

2

)(1+x

2

)

dx

∣∴2sin

2

θ=1+(1−sin

2

θ)=1+cos

2

θ=1+x

2

=−

3

1

∫(

1+x

2

1

4+x

2

1

)dx

=

3

−1

[tan

−1

x−

2

1

tan

−1

(

2

x

)]

=

3

1

[tan

−1

(cosθ)−

2

1

tan

−1

(

2

cosθ

)]

Hope it helps

Pls mark me the brainliest

Answered by mathdude500
12

\large\underline{\sf{Given- }}

\rm :\longmapsto\: - \pi \leqslant \theta  \leqslant \pi

and

\rm :\longmapsto\:2sin \theta cos\theta \:  =  \: 2 - sin\theta  + 4cos\theta

\large\underline{\sf{To\:Find - }}

\boxed{ \rm{ \theta }}

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:2sin \theta cos\theta \:  =  \: 2 - sin\theta  + 4cos\theta

can be rewritten as

\rm :\longmapsto\:2sin \theta cos\theta  -  \: 2  + sin\theta   -  4cos\theta  = 0

can be re-arranged as

\rm :\longmapsto\:2sin \theta cos\theta + sin\theta  - 2  -  4cos\theta  = 0

\rm :\longmapsto\:sin\theta (2cos\theta  + 1) - 2(1 + 2cos\theta ) = 0

\rm :\longmapsto\:(sin\theta  - 2)(2cos\theta  + 1) = 0

\rm :\implies\:sin\theta  =  2 \:  \:  \: or \:  \:  \: cos\theta  =  - \dfrac{1}{2}

Now,

 \red{\rm :\implies\:sin\theta  = 2  \: is \: rejected \: as \:  - 1 \leqslant sin\theta  \leqslant 1}

So,

\rm :\implies\:cos\theta  =  -  \: \dfrac{1}{2}

\rm :\implies\:cos\theta  =  \: cos\dfrac{2\pi}{3}

We know,

\boxed{ \rm{ cosx = cosy \:  \implies \: x = 2n\pi  \:  \pm \:  y \:  \forall \: n \:  \in \: Z}}

So,

\bf\implies \:\theta  = 2n\pi \:  \pm \: \dfrac{2\pi}{3} \:  \forall \: n \:  \in \: Z

As it is given that,

\rm :\longmapsto\: - \pi \leqslant \theta  \leqslant \pi

So, it can assume the values,

\bf\implies \:\theta   \: =  \: \dfrac{2\pi}{3},  \: -  \:  \dfrac{2\pi}{3}

Additional Information : -

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi\:  \forall \: n \:  \in \: Z \\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\:  \forall \: n \:  \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\:  \forall \: n \:  \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \:  \forall \: n \:  \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\:  \forall \: n \:  \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \:  \forall \: n \:  \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions