Math, asked by sonusharma45, 6 months ago

solve thid question mate ​

Attachments:

Answers

Answered by KaamranRizvi
8

Answer:

M is a point on the side BC of a parallelogram ABCD 

 

(i) Consdier △DMC and △NMB, 

∠DCM=∠NBM       alternate angles 

∠DMC=∠NMB       vertically opposite angles 

∠CDM=∠MNB       alternate angles 

By AAA-similarity: 

△DMC∼△NMB 

 

From similarity of the triangle: 

 

MN/DM=BN/DC 

 

(ii) 

From (i), MNDM=BNDC 

 

Add 1 on both sides 

 

MN/DM+1=BN/DC+1 

 

MN(DM+MN)=BN(DC+BN) 

 

Since AB=CD 

 

MN(DM+MN)=BN(AB+BN)

 

DM/DN=DC/AN Hence proved.

Answered by hammadsurti
2

Answer:

inbox dear

Step-by-step explanation:

plzzzzzzzzzzz

Similar questions