Math, asked by Anonymous, 1 month ago

Solve this 12th question ASAP​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

4 \sin(x)  \cos(x)  + 2 \sin(x)  + 2 \cos(x)  + 1 = 0 \\

 \implies \: 2 \sin(x)  \{2 \cos(x)  + 1 \}  + 1 \{2 \cos(x)  + 1 \} = 0 \\

 \implies \: \{ 2 \sin(x) + 1 \}  \{2 \cos(x)  + 1 \}  = 0 \\

 \implies \:  2 \sin(x) + 1  = 0 \:  \:  \: \:  or \:  \:  \:  \:   2 \cos(x)  + 1  = 0 \\

 \implies \: \sin(x)  =   -  \frac{1}{2}  \:  \:  \: \:  or \:  \:  \:  \:  \cos(x)  =     - \frac{1}{2}  \\

 \implies \: \sin(x)  =   \sin \bigg(-\frac{\pi}{6} \bigg)  \:  \:  \: \:  or \:  \:  \:  \:  \cos(x)  =      \cos \bigg(\frac{2\pi}{3} \bigg)  \\

 \implies \:x=   n\pi-( - 1)^{n} .\frac{\pi}{6}  \:  \:  \: \:  or \:  \:  \:  \:  x  =    2m\pi \pm\frac{2\pi}{3}  \\

So,

x =  \frac{7\pi}{6} , \frac{11\pi}{6} \:  \:  \:  \:  \:  \: or \:  \:  \:  \: \:  \:  x =  \frac{2\pi}{3}, \frac{4\pi}{3}  \\

Similar questions