Math, asked by lingesh077, 10 months ago

solve this............​

Attachments:

Answers

Answered by Sharad001
47

Question :-

 \text{find \:} \sf{  \frac{dy}{dx}}  \\ \sf{ y \:  =  \red{ \sqrt{  \green{\sin \: x +  \sin \: x \:  + ...... +  \infty}} }} \\

Answer :-

\rightarrow \boxed{ \sf{  \red{\frac{dy}{dx}}  =  \frac{ \green{ \cos \: x}}{ \orange{2y - 1}} }} \:

Solution :-

According to the question,

\sf{ \red{ y }\:  =  \sqrt{  \orange{\sin \: x +  \sin \: x \:  + ...... +  \infty}} } \:  \\  \\ \text{ we \: can \: write \: it \: } \\  \\  \rightarrow \sf{ y   =   \pink{\sqrt{  \blue{\sin \: x }\:  + ( \red{ \sin \: x \:  + ..... \infty})} }} \\  \\  \rightarrow \sf{  \blue{y} \:  =  \green{ \sqrt{ \red{ \sin \: x + y}} }} \\  \\  \text{ \orange{squaring }\: on \:  \red{both }\:  \green{sides} \: } \\  \\  \rightarrow \sf{   \green{{y}^{2} } =  \red{ \sin \: x }+  y} \\  \\   \text{now \: \orange{ differentiate} \:  \red{with }\: respect \blue{ to \: x}} \\  \\  \rightarrow \sf{ \green{2y \:  \frac{dy}{dx} } =   \red{\cos \: x} \:  +  \:  \orange{ \frac{dy}{dx} }} \\  \\  \rightarrow \sf{ \orange{2y \:  \frac{dy}{dx}  }-  \frac{dy}{dx}  = \green{  \cos \: x}} \\  \\  \rightarrow \sf{  \red{\frac{dy}{dx} } \blue{(2y - 1)} =   \pink{\cos \: x}} \\  \\  \rightarrow \boxed{ \sf{  \red{\frac{dy}{dx}}  =  \frac{ \green{ \cos \: x}}{ \orange{2y - 1}} }}

___________________________

Similar questions