Solve this...........
Answers
Answer:
hloo mate..
here's ur answer...
Given: OB=OD and AB=CD
Construction: DE perpendicular on AC and BF perpendicular on AC
Proof:
(i) In ΔDOE and ΔBOF,
∠DEO = ∠BFO (Perpendiculars)
∠DOE = ∠BOF (Vertically opposite angles)
OD = OB (Given)
∴ ΔDOE ≅ ΔBOF by AAS congruence condition.
∴ DE = BF (By CPCT) — (i)
also, ar(ΔDOE) = ar(ΔBOF) (Congruent triangles) — (ii)
Now,
In ΔDEC and ΔBFA,
∠DEC = ∠BFA (Perpendiculars)
CD = AB (Given)
DE = BF (From i)
∴ ΔDEC ≅ ΔBFA by RHS congruence condition.
∴ ar(ΔDEC) = ar(ΔBFA) (Congruent triangles) —(iii)
Adding (ii) and (iii),
ar(ΔDOE) + ar(ΔDEC) = ar(ΔBOF) + ar(ΔBFA)
⇒ ar (DOC) = ar (AOB)
(ii) ar(ΔDOC) = ar(ΔAOB)
Adding ar(ΔOCB) in LHS and RHS, we get,
⇒ar(ΔDOC)+ar(ΔOCB)=ar(ΔAOB)+ar(ΔOCB)
⇒ ar(ΔDCB) = ar(ΔACB)
(iii) When two triangles have same base and equal areas, the triangles will be in between the same parallel lines
ar(ΔDCB) = ar(ΔACB)
DA || BC — (iv)
For quadrilateral ABCD, one pair of opposite sides are equal (AB = CD) and other pair of opposite sides are parallel.
∴ ABCD is parallelogram.
hope it helps..
please mark brainliest...
sry yrr..
diagram banane ki kosish ki thi.....xD
hope samajh me aa jaayega..
Step-by-step explanation:
( hint: from D and B, draw perpendicular to AC)
OB =OD
AB =CD
let DM and BN are altitude on AC
angle DOM=angleBON ( vertically opposite angle)
OB=OD ( given)
angleDMO=angleBNO ( 90 degree)
angle DOM=angle BON ( by ASA)
DM=BN (by cpct)
area (DOM) =area (BON) ( by cpct) ( equation 1 )
In triangle DMC and triangle BNA
CD = AB ( given)
angle DMC=angleBNA ( 90 degree)
DM=BN (proved)
triangle DMC congurent triangle BNA ( by SAS)
area (DMC) =area)(BNA) ( by cpct) (equation 2)
adding eqn 1. and 2.
area (DOM) + area (DCM) = area (BON) + area (BNA)
area (DOC) =area (AOB) ( equation 3 )
Adding area (BOC) on both side in equation 3.
area (DOC) + area (BOC)= area (AOB) + area (BOC)
area (DCB) = area (ACB) (equation 4)
triangle DOC congurent triangle AOB (proved)
angle CDO congurent angle OBA ( by cpct)
But angle CDO and angle OBA are the pairs of alternate angle form by parallel lines AB and CD which are AB = CD
quadrilateral ABCD is a parallelogram
therefore, AD||BC
I hope it helps u