Math, asked by keva, 8 months ago

solve this.....................​

Attachments:

Answers

Answered by iqrajan3256
0

Answer:

kis class Mai padte ho mko ya qstnz nhi aata hai..........

Step-by-step explanation:

follow me and mark as brainlist plzzzzzzzzzzz and plzzzzz

Answered by MissSolitary
1

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \underline{ \underline{{ \huge{ \mathfrak {  \: S}}}{ \textbf{ \textsf{OLUTION - \: }}}}}

{  \tt{A = diag[a_1 , a_2 , a_3]}}

 { \tt{n \geqslant 1}}

{ \tt{To  \: prove :-}} \\ { \tt{A = diag[a_1 ^{n}  , a_2  {}^{n} , a_3  {}^{n} ]}}

Now,

{ \tt{A = diag[a_1 , a_2 , a_3]}} \\  \\  \implies{ \tt{A = \left[ \begin{array}{c c  } \sf    {a}_{1} & \sf 0  & \sf 0\\\\ \sf 0& \sf \:  {a}_{2}& \sf 0 \\  \\  \sf 0& \sf 0 & \sf  {a}_{3}  \end{array} \right]_{ 3×3}}} \\  \\ {\tt{L.H.S  ,}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies{ \tt{ {A}^{n} =\left[ \begin{array}{c c  } \sf    {a}_{1} ^{n}  & \sf 0  & \sf 0\\\\ \sf 0& \sf \:  {a}_2^{n}& \sf 0 \\  \\  \sf 0& \sf 0 & \sf  {a}_3^{n}  \end{array} \right]  }} \\  \\  \\  \implies{  \tt{diag[a_1 {}^{n}  , a_2 {}^{n}  , a_3 {}^{n} ]}}

  \implies{ \tt{R.H.S = diag[a_1^n , a_2^n , a_3^n]}} \\  \\  \\  \therefore{ \tt{ L.H.S= R.H.S \:  \:  \:  \:  \:  \:  \: (proved)}}

_____________________

@MissSolitary✌️

Similar questions