Physics, asked by Anonymous, 9 months ago

solve this ..........​

Attachments:

Answers

Answered by pulakmath007
106

♕ \:  \:  \large{\rm{{\underline{\underline{\red{S}\purple{O}\pink{LU}\orange{TI}\green{ON}}}}}} \:  \: ♕

FORMULA TO BE IMPLEMENTED

For an Geometric Progression with first term = a and common ratio = r ( < 1)

The sum of first n terms

  \displaystyle \:   =   a \:  \times  \frac{1 -  {r}^{n} }{1 - r}

TO DETERMINE

7 + 7.7 + 7.77 + 7.777 + ............upto \:  \: 50 \:  \: terms

CALCULATION

7 + 7.7 + 7.77 + 7.777 + ............upto \:  \: 50 \:  \: terms

 =  \displaystyle \:  \: 7 \times (1 + 1.1 + 1.11 + 1.111 + ............upto \:  \: 50 \:  \: terms

 =    \displaystyle \:  \:  \dfrac{7}{9} \times (9 + 9.9 + 9.99 + 9.999 + ............upto \:  \: 50 \:  \: terms

 =    \displaystyle \:  \:  \dfrac{7}{9} \times  \{ \: (10 - 1) + (10 - 0.1) +(10  - 0.01)+ (10 - 0.001)+ ............upto \:  \: 50 \:  \: terms \}

 =    \displaystyle \:  \:  \dfrac{7}{9} \times  \{ \: (10 + 10 + 10 + 10 + ........upto \:  \: 50 \:  \: terms \:  )  -   (1 + 0.1 + 0.01 + 0.001 +  ............upto \:  \: 50 \:  \: terms \}

 =    \displaystyle \:  \:  \dfrac{7}{9} \times  \{ \: (10  \times 50 )  -   (1 + 0.1 + 0.01 + 0.001 +  ............upto \:  \: 50 \:  \: terms \}

 =    \displaystyle \:  \: ( \dfrac{7}{9} \times  \ \: 500 )  -    \frac{7}{9} (1 + 0.1 + 0.01 + 0.001 +  ............upto \:  \: 50 \:  \: terms \} \:  \: .........(1)

Now

 =    \displaystyle \:   1 + 0.1 + 0.01 + 0.001 +  ............upto \:  \: 50 \:  \: terms

This is a Geometric Progression

Where First term = a = 1

Common Ratio = r = 0.1 < 1

So

     \displaystyle \:   1 + 0.1 + 0.01 + 0.001 +  ............upto \:  \: 50 \:  \: terms

 = \displaystyle \:  1 \times  \frac{1 -  {(0.1)}^{50} }{1 - 0.1}

  \displaystyle \:   =  \frac{10}{9}  \{1 -  {(0.1)}^{50}  \}

Hence from (1)

7 + 7.7 + 7.77 + 7.777 + ............upto \:  \: 50 \:  \: terms

  \displaystyle \:   =   \frac{3500}{9} -  \frac{7}{9}   \times \frac{10}{9}  \{1 -  {(0.1)}^{50}  \}

  \displaystyle \:   =   \frac{3500}{9} -  \frac{70}{81}  \{1 -  {(0.1)}^{50}  \}

Similar questions