Math, asked by Anonymous, 7 months ago

Solve this.........​

Attachments:

Answers

Answered by tennetiraj86
9

Answer:

answer for the given problem is given

Attachments:
Answered by 217him217
2

Step-by-step explanation:

 \frac{sin\theta}{1 + cos\theta} +  \frac{1 + cos\theta}{sin\theta}   \\  =  >  \frac{( sin\theta \: sin\theta \:  +  \: (1 + cos\theta) (1 + cos\theta))}{(1 + cos\theta) \: sin\theta}  \\  =  >  \frac{ {sin}^{2}\theta \:  +  \: 1 + 2cos\theta \:  +  {cos}^{2} \theta}{ \:  \:  (1 + cos\theta) \: sin\theta}  \\  =  >  \frac{( {sin}^{2}\theta\:  +  {cos}^{2} \theta) + 1 + 2cos\theta}{ \: (1 + cos\theta) \: sin\theta }  \\  =  >  \frac{( \:  \:  \ 1+ 1 + 2cos\theta  \: )}{ \:  \:  (1 + cos\theta) \: sin\theta\:  \: }  \\  =  >  \frac{2(1 + cos\theta)}{ \:   (1 + cos\theta) \: sin\theta \: \: }  \\  =  >  \frac{2}{sin\theta}  \\  =  > 2cosec\theta

Similar questions