Math, asked by PᴀʀᴛʜTɪᴡᴀʀʏ, 9 months ago

solve this............​

Attachments:

Answers

Answered by MishraVidya1205
2

Answer:

arranging in ascending order=

6 15 29 41 60 70

cancelling from both the sides equally

therefore, we get 29 and 41

to find the median of 29 and 41 divide it by 2

29+41/2

=70/2

therefore,median =35

Step-by-step explanation:

please mark me as the brainliest

Answered by RISH4BH
57

\large{\underline{\underline{\red{\sf{\hookrightarrow Given:- }}}}}

A frequency distribution table is given to us.

\large{\underline{\underline{\red{\sf{\hookrightarrow To\:Find:-}}}}}

The median of the given data.

\large{\underline{\underline{\red{\sf{\hookrightarrow Solution:- }}}}}

Now , given table to us is :

\begin{tabular}{|c|c|} \cline{1-2}Marks Obtained & No. of students \\ \cline{1-2} Below 10 & 6 \\ \cline{1-2} Below 20 & 15 \\ \cline{1-2} Below 30 & 29 \\ \cline{1-2} Below 40 & 41 \\ \cline{1-2} Below 50 & 60 \\ \cline{1-2} Below 60 & 70 \\ \cline{1-4}  \end{tabular}

Now , we may prepare second table which is :

\boxed{\begin{tabular}{|c|c|c|}\cline{1-3} Class Interval & $Frequency(f_i)$ & $\underset{Frequency}{Cummulative}$ \\ \cline{1-3} $0-10$&6&6 \\ \cline{1-3} $10-20$&9&15 \\ \cline{1-3} $20-30$&14&29 \\ \cline{1-3} $30-40$&12&41 \\ \cline{1-3} $40-50$&19&60 \\ \cline{1-3} $50-60$&10&70 \\ \cline{1-3} & $N=\Sigma f_i = 70$ & \\ \cline{1-4}\end{tabular}}

\tt{Now }

\tt:\implies N = 70

\tt:\implies \dfrac{N}{2}=70

The cumulative frequency just greater than 35 is 41 and the corresponding classes 30 - 40 .

So , the median class is 30 - 40 .

\blue{\bf Hence\:here ,}

  • \textsc{ l = 30}
  • \textsc {h = 10}
  • \textsc {f = 12}
  • \textsc {cf = 29}
  • \textsc {N / 2 = 35}

\tt :\implies Median (M_e)=l+\Bigg\{h\times\dfrac{\dfrac{N}{2}-cf}{f}\Bigg\}

\tt:\implies M_e=30+\Bigg\{10\times\dfrac{35-29}{12}\Bigg\}

\tt:\implies M_e=30+\bigg(10\times\dfrac{\cancel{6}}{\cancel{12}}\bigg)

\tt:\implies M_e=30+5

\underline{\boxed{\red{\tt{\longmapsto\:\: Median\:\:=\:\:35\:\:}}}}

\purple{\boxed{\pink{\bf{\dag Hence\:the\:median\:is\:35.}}}}

Similar questions