solve this............
Answers
[tex]Let \: the \: point \: of \: contact \: of \: tangents \: on \\ \: the \: hyperbola \: have \: coordinates (x1,y1). \\ \\ So, \: the \: equation \: of \: a \: tangent \: is \: \\ \\
\frac{x x_{1}
}{9} − \frac{y y_{1}}{4} =1.....(1) \\ \\
The \: slope \: of \: the \: required \: tangent \ \\ to \: the \: hyperbola \: is \: 2. \\ \\
For \: y=mx+c \: to \: be \: a \\ tangent \: to \: the \: hyperbola \\
{c}^{2} = {a}^{2} {m}^{2} − {b}^{2} \\
\\
⇒c=± \sqrt{9 \times 4 - 4} \\
=±32 \\ =±4 \sqrt{2} \\
Hence, \: equations \: of \: the \: \\ tangents \: are \:
\\
y=2x±4 \sqrt{2} \\
⇒2x−y=±4 \sqrt{2} .....(2) \\
Equating \: (1) \: and \: (2) \: we \: get \\
\\
\frac{ x_{1} }{2 \times 9} = \frac{ y_{1}}{4 \times 1} \: = \: ± \frac{1}{4 \sqrt{2} } \\ \\
⇒ x_{1}=± \frac{9}{2 \sqrt{2} } \: , y_{1} =± \frac{1}{ \sqrt{2} } \\ \\
B \: is \: the \: right \: option
[tex]
hope it helps u dostho .... :)
use website for perfection
#Mahira
Hii akka eppadi irukinga..ippa laan on varathey illa poola.. neet preparation laan eppadi poguthu..
Tc..be safe and all the best akka ☺️...