Math, asked by Anonymous, 1 year ago

solve this .........☺️

Attachments:

Answers

Answered by JinKazama1
18
Q : 7 If  x \in [\frac{-5\pi}{2}, \frac{5\pi}{2}] ,the greatest positive solution of
 1 + \sin^4(x) = \cos^2(3x) .

Ans: 7 : We have,

Steps:
1) LHS = 1 + sin^4(x) \\ =&gt; <br />LHS_{min}= 1+0= 1 \\ <br />RHS= \cos^2(3x) \\ <br />RHS_{max}=1

2)This is possible when
LHS = RHS = 1
 1 + \sin^4(x) = 1 \\ =&gt; \sin^4(x) = 0 \\ <br />=&gt; \sin(x)= 0\\ <br />=&gt; x = n\pi : [n\in I] \\ <br />=&gt;x =± \pi, ±2\pi
=> Maximum positive value of x in given x = 2π

Q: 8 : If
 \cos(x) =<br />\sqrt{1-\sin(2x)}, 0&lt;x &lt; \pi <br /> ,
then a value of x is :
Ans: 8 :
1# We have,
 \cos(x) = <br />\sqrt{1-\sin(2x)},
=> cos(x) is positive.
=> 0 <x <π/2

2# :  <br />\cos^2(x) = 1 - \sin(2x)  \\<br />=&gt; \cos^2(x) = \sin^2(x) + \\ \cos^2(x) -2 \sin(x) \cos(x) \\ <br />=&gt; \sin^2(x) = 2\sin(x) cos(x) \\ <br />=&gt; \sin(x) = 2\cos(x) : as[ \sin(x) \neq 0] <br />=&gt; \tan(x) = 2 \\ <br />=&gt; x = \tan^{-1}(2)

Anonymous: thnks ;)
JinKazama1: ^_^ Hope You understand the answer.
Anonymous: yaaa
Similar questions