Math, asked by Grave30849, 10 months ago

solve this 50 points

if a cone of height 8m jas a curved surface area of 188.4m then find the radius of its base and find its volume take (π=3.14)​

Answers

Answered by Anonymous
26

Question

if a cone of height 8m jas a curved surface area of 188.4m then find the radius of its base and find its volume take (π=3.14)

* Given

h=8m

c.s.a=188.4m

r = ?

v = ?

\rule{300}2

【 solution 】

l^2=r^2+h^2 \\ l^2=r^2+8^2\\l^2=r^2+64\\l=\sqrt{r^2+64}

c.s.a=πrl

=188.4=3.14×r×\sqrt{r^2+64} \\=r×\sqrt{r^2+64}=60

squaring both side

=r^2×(r^2+64)=3600\\=r^4+65r^2+3600=0

let = r^2=y \\y^2+64y-3600=0\\y^2+(100-36)y-3600=0\\y^2+100h-36y-3600=0\\y(y+100)-36(y+100)=0\\(y+100)(y-36)=0\\y+100=0,y=-100 \\y-36=0\\y=36 \\r^2=36\\r=6m\\v=\frac{1}{3}πr^2h\\\frac{1}{3}×3.14×6×6×h\\3.14×12h\\h=3.14×12\\h=37.68cm^3

*awesome question*

Answered by Anonymous
29

Answer:

{ \huge{ \bf{ \underline{ \red{Given}}}}}

Height of cone = 8m

C.S.A of cone = 188.4m

Find:-

Volume of cone

Solution:-

C.S.A of cone = πrl

So, now we have to find value of L :-

{ \to{ \sf{ {</u></strong><strong><u>L</u></strong><strong><u>}^{2} =  {r}^{2}   +  {h}^{2} }}}

{ \to{ \sf{ {</u></strong><strong><u>L</u></strong><strong><u>}^{2}  =  {r}^{2}  +  {8}^{2} }}}

{ \to{ \sf{ {</u></strong><strong><u>L</u></strong><strong><u>}</u></strong><strong><u>^{2} =  {r}^{2}   + 64}}}

{ \to{ \sf{</u></strong><strong><u>L</u></strong><strong><u> =  \sqrt{ {r}^{2}  + 64} }}}

C.S.A of cone = πrl

{ \sf{188.4 = 3.14 \times r \times  \sqrt{ {r}^{2}  + 64} }}

{ \sf{ \frac{188.4}{3.14} = r \times  \sqrt{ {r}^{2}  + 64}  }}

{ \sf{60 = r \times  \sqrt{ {r}^{2}  + 64} }}

DO S.O.B.S:-

{ \sf{ {60}^{2}  =  {r}^{2}  +  { \sqrt{ {r}^{2} + 64 } }^{2} }}

{ \sf{3600 =  {r}^{2}  × {r}^{2} + 64 }}

{ \sf{ {r}^{4}  + 64 {r}^{2} - 3600 = 0 }}

{ \sf{ {r}^{2} + 64 {r}^{2} - 3600 = 0  }}

{ \sf{ {r}^{2}  + 100x - 36x - 3600 = 0}}

{ \to{ \sf{x(x + 100) - 36(x + 100) }}}

(x+100) (x-36) =0

x+100=0 = >x = -100

x-36 = 0

x= 36

{ \sf{ {r}^{2} = 36 }}

{ \sf{r =  \sqrt{36} }}

{ \sf{r = 6}}

Volume of cone = 1/3πr²h

{ \to{ \sf{ \frac{1}{3}  \times  3.14 \times  {6}^{2}  \times 8}}}

{ \to{ \sf{ \frac{1}{3 } \times 3.14 \times 36 \times 8 }}}

{ \to{ \sf{ \frac{1}{3}  \times 3.14 \times 288}}}

{ \to{ \sf{ \frac{1}{3}  \times  904.32}}}

{ \to{ \sf{ \frac{904.32}{3} }}}

{ \to{ \sf{301.44}}}

{ \therefore { \sf{volume \: of \: cone \:  = 301.44}}}

Similar questions