Math, asked by 88ajayrajargmailcom, 1 year ago

solve this,,,,,,,,,,,,,,,,,,,

Attachments:

Answers

Answered by Anonymous
11
\underline\bold{\huge{SOLUTION \: :}}

\bold{CORRECT\:\:QUESTION}

 \frac{1}{a + b + x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}

=>  \frac{1}{a + b + x} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}

=>  \frac{x - a - b - x}{x(a + b + x)} = \frac{b + a}{ab}

=>  \frac{ - (a + b)}{ax + bx + {x}^{2} } = \frac{a + b}{ab}

=>  \frac{ - 1}{ {x}^{2} + ax + bx } = \frac{1}{ab}

=>  {x}^{2} + ax + bx = - ab

=>  {x}^{2} + ax + bx + ab = 0

=> x(x + a) + b(x + a) = 0

______________________________

\bold{EITHER  :}

 x+ a = 0

=> x = - a

______________________________

\bold{OR  :}

 x + b = 0

 x = - b

\bold{THUS\:\:THE\:\: SOLUTION\:\:IS\:\:x = -a, -b}
Similar questions