solve this
.....
..
..
Attachments:
Princy11:
please delete these answers i am want the right one
Answers
Answered by
1
tanA=ntanB⇒sinAcosA=n⋅sinBcosB.
⇒sinAsinB=n⋅cosAcosB.....................................⟨1⟩.
Also given that, sinA=msinB⇒sinAsinB=m.....................⟨2⟩.
Comparing ⟨1⟩and⟨2⟩, we get,
m=n⋅cosAcosB, giving, cosB=nm⋅cosA......⟨3⟩.
⟨2⟩⇒sinB=1m⋅sinA...................................⟨2'⟩.
Now, using ⟨2'⟩and⟨3⟩ in cos2B+sin2B=1, we get,
⇒n2m2⋅cos2A+1m2⋅sin2A=1.
⇒n2cos2A+sin2A=m2.
⇒n2cos2A+(1−cos2A)=m2.
⇒n2cos2A−cos2A=m2−1,i.e.,
⇒(n2−1)cos2A=(m2−1).
⇒cos2A=m2−1n2−1, as desired!
Enjoy Maths.!
Similar questions