Math, asked by brainlyfairy5676, 9 months ago

Solve this (81)^-4 ÷ ( 729) ^(2-x) = 9^4x ​

Answers

Answered by Anonymous
33

\sf\large\underline\blue{Given:-}

  \\ \sf  \to {(81)}^{ - 4}  \div  {(729)}^{2 - x}  =  {(9)}^{4x}  \\

\sf\large\underline\blue{To\: Find :-}

• Value of x

\sf\large\underline\blue{Solution:-}

Given that,

  ↦ {(81)}^{ - 4}  \div  {(729)}^{2 - x}  =  {(9)}^{4x}  \\

  ↦\dfrac{ {(81)}^{ - 4}}{{(729)}^{2 - x} } =  {(9)}^{4x}  \\

   ↦\dfrac{ {( {3}^{4} )}^{ - 4}}{{({3}^{6})}^{2 - x} } =  {( {3}^{2} )}^{4x}  \\

↦ \dfrac{ {( {3})}^{ -16 }}{{(3)}^{6(2 - x)} } =  {( {3} )}^{8x}  \\

 ↦ \dfrac{ {( {3})}^{ -16 }}{{(3)}^{12- 6x} } =  {( {3} )}^{8x}  \\

 ↦{ {( {3})}^{ -16 }}{{(3)}^{ - 12 + 6x} } =  {( {3} )}^{8x}  \\

 ↦ { {( {3})}^{ -16 - 12 + 6x }} =  {( {3} )}^{8x}  \\

 ↦ { {( {3})}^{ 6x  - 28}} =  {( {3} )}^{8x}  \\

_____________________________________________________

Now, Compare

 ↦  6x - 28 =  8x  \\

  ↦6x - 8x =  28  \\

  ↦  x =  - \cancel  \dfrac{ 28}{2}  \\

  ↦x  =  -14 \\

\small{\underline{\sf{\blue{Hence-}}}}

• Value of x is = -14

Similar questions