Physics, asked by ghazala6687, 1 year ago

Solve this :

9. A uniform cylinder rolls from rest down the side of a trough given by y = x2. The cylinder does not slip from A to B but the surface of the through is frictionless from B to C as shown. If the cylinder ascends up to C, then (Neglect the radius of cylinder).

(a) y2=y1 (b) y2=23y1(c) y2=y13 (d) y2=25y1

Answers

Answered by Rajsaumya
21

Answer in attachment


Attachments:
Answered by bestwriters
11

If the cylinder ascends up to C, then (b) \bold{y2=\frac{2}{3}y1}

Solution:

Applying energy conservation at A and B:

\bold{mgy1=\frac{1}{2}mv_B^2(1+\frac{k^2}{r^2})}

\bold{mgy1=\frac{1}{2}mv_B^2(1+\frac{1}{2})}

\bold{mgy1=\frac{1}{2}mv_B^2(\frac{3}{2})=\frac{3}{4}mv_B^2}

\bold{gy1=\frac{3}{4}v_B^2\longrightarrow(1)}

Applying energy conservation at B and C:

\bold{E_B=E_C}

\bold{mgy1=mgy2+(\frac{1}{2}Ir\omega^2)}

\bold{[\because V_B=\omega r]}

\bold{mgy1=mgy2+(\frac{1}{2}\times\frac{mr^2}{2}\times\frac{V_B^2}{r^2})}

\bold{mgy1=mgy2+(\frac{1}{4}\times m\times V_B^2)}

\bold{mgy1=mgy2+(\frac{m}{4}\times\frac{4gy1}{3})}

\bold{y1=y2+\frac{y1}{3}}

\bold{y2=y1-\frac{y1}{3}}

\bold{y2=\frac{3y1-y1}{3}}

\bold{\therefore y2=\frac{2}{3}y1}

Similar questions