Math, asked by mrajpoot01, 1 year ago

solve this..........................​

Attachments:

Answers

Answered by Anonymous
1

Answer : 35

___________________

Solution :

_________________

Given that :

3x +  \frac{2}{x}  = 7

As we know that :

(a-b)² = (a+b)² - 4ab

 =  >  {(3x  -   \frac{2}{x} )}^{2}  =  {(3x +  \frac{2}{x} )}^{2}  - 4(3x)( \frac{2}{x} ) \\  \\  =  >  {(3x +  \frac{2}{x} )}^{2}  =  {7}^{2}   - 24 \\  \\  =  >  {(3x +  \frac{2}{x} )}^{2}  = 49 - 24 = 25 \\  \\  =  >  (3x -  \frac{2}{x} ) = 5

Now, we have to find the value of :

9 {x}^{2}  -  \frac{4}{ {x}^{2} }

As we know that :

a²-b² = (a+b)(a-b)

 =  > 9 {x}^{2}  -  \frac{4}{ {x}^{2} }  =  {(3x)}^{2}  -  { (\frac{2}{x}) }^{2}  \\  \\  =  >  9{x}^{2}  -  \frac{4}{ {x}^{2} }  = (3x +  \frac{2}{x} )(3x -  \frac{2}{x} ) \\  \\  =  > 9 {x}^{2}  -  \frac{4}{ {x}^{2} }  = 7 \times 5 \\  \\  =  >  9{x}^{2}  -  \frac{4}{ {x}^{2} }  = 35


mrajpoot01: thanks
mrajpoot01: bhai
Anonymous: ur most welcome ☺️ brother
Similar questions