Math, asked by mcdyno16, 11 hours ago

Solve this and I'll give you brainliest ​

Attachments:

Answers

Answered by juhibohra2
2

Answer:

let's try

Step-by-step explanation:

answer is 1

I think so dont know why

Answered by mathdude500
5

Given Question

\rm :\longmapsto\:If \: A = \bigg[ \begin{matrix}3&1 \\  - 1&2 \end{matrix} \bigg] \: and \:  {A}^{2} - 5A + 7I = 0 \: then \: I =

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:A = \bigg[ \begin{matrix}3&1 \\  - 1&2 \end{matrix} \bigg]

and

\rm :\longmapsto\: {A}^{2} - 5A + 7I = 0

 \red{ \sf \: Pre-multiply \: by \:  {A}^{ - 1}  \: on \: both \: sides}

So, we get

\rm :\longmapsto\: {A}^{ - 1}  {A}^{2} - 5 {A}^{ - 1} A + 7 {A}^{ - 1} I = 0

\rm :\longmapsto\: ({A}^{ - 1}A)A  - 5 I + 7 {A}^{ - 1} = 0

\rm :\longmapsto\: IA  - 5 I + 7 {A}^{ - 1} = 0

\rm :\longmapsto\: A  - 5 I + 7 {A}^{ - 1} = 0

\rm :\longmapsto\: A + 7 {A}^{ - 1} = 5I

\rm :\longmapsto\:I = \dfrac{1}{5}(A + 7 {A}^{ - 1})

\rm :\longmapsto\:I = \dfrac{1}{5}A + \dfrac{7}{5}  {A}^{ - 1}

Verification

\rm :\longmapsto\:A = \bigg[ \begin{matrix}3&1 \\  - 1&2 \end{matrix} \bigg]

So,

\rm :\longmapsto\: |A|  = 6 - ( - 1) = 7

Now, Evaluation of Cofactors

\rm :\longmapsto\:A_{11} =  {( - 1)}^{1 + 1}2 = 2

\rm :\longmapsto\:A_{12} =  {( - 1)}^{1 + 2}( - 1)= 1

\rm :\longmapsto\:A_{21} =  {( - 1)}^{2 + 1} 1=  - 1

\rm :\longmapsto\:A_{22} =  {( - 1)}^{2 + 2}  3= 3

So,

\rm :\longmapsto\:adjA = \bigg[ \begin{matrix}2& - 1 \\1&3 \end{matrix} \bigg]

So,

\rm :\longmapsto\: {A}^{ - 1}  =\dfrac{1}{ |A| } adjA =  \dfrac{1}{7} \bigg[ \begin{matrix}2& - 1 \\1&3 \end{matrix} \bigg]

Now, Consider

\rm :\longmapsto\:\dfrac{1}{5}A + \dfrac{7}{5}  {A}^{ - 1}

\rm \:  =  \: \dfrac{1}{5}\bigg[ \begin{matrix}3& 1 \\  - 1&2 \end{matrix} \bigg]  + \dfrac{7}{5}  \times \dfrac{1}{7}\bigg[ \begin{matrix}2& - 1 \\ 1&3 \end{matrix} \bigg]

\rm \:  =  \: \dfrac{1}{5}\bigg[ \begin{matrix}3& 1 \\  - 1&2 \end{matrix} \bigg]  + \dfrac{1}{5}\bigg[ \begin{matrix}2& - 1 \\ 1&3 \end{matrix} \bigg]

\rm \:  =  \: \dfrac{1}{5}\bigg(\bigg[ \begin{matrix}3&1 \\  - 1&2 \end{matrix} \bigg]  + \bigg[ \begin{matrix}2& - 1 \\ 1&3 \end{matrix} \bigg]\bigg)

\rm \:  =  \: \dfrac{1}{5}\bigg[ \begin{matrix}5&0 \\ 0&5 \end{matrix} \bigg]

\rm \:  =  \: \bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]

\rm \:  =  \: I

Hence, Verified

Hence, Option (d) is correct.

Similar questions