Math, asked by imkrishnakumar, 8 months ago

solve this as fast as possible​

Attachments:

Answers

Answered by BrainlyPopularman
11

TO PROVE :

 \\ \sf  \implies \dfrac{ \cos( \theta) }{1 -  \sin( \theta) } =  \tan \left( \frac{\pi}{4} +  \frac{ \theta}{2} \right) \\

SOLUTION :

• Let's take L.H.S. –

 \\ \sf  \:  \:   =  \:  \:  \dfrac{ \cos( \theta) }{1 -  \sin( \theta) } \\

• We know that –

 \\ \sf  \longrightarrow  \:   \cos( \theta) =  \sin \left( \dfrac{ \pi}{2} -  \theta  \right)   \\

 \\ \sf  \longrightarrow  \:   \sin( \theta) =  \cos \left( \dfrac{ \pi}{2} -  \theta  \right)   \\

• So that –

 \\ \sf  \:  \:   =  \:  \:  \dfrac{ \sin \left( \dfrac{ \pi}{2} -  \theta  \right)}{1 -   \cos\left( \dfrac{ \pi}{2} -  \theta  \right)} \\

• Using identity –

 \\ \sf  \longrightarrow  \:   \cos( \theta) =1 - 2  \sin^{2}  \left( \dfrac{ \theta}{2} \right)   \\

 \\ \sf  \longrightarrow  \:   \sin( \theta) = 2 \sin \left(\dfrac{ \theta}{2}  \right)  \cos \left( \dfrac{ \theta}{2} \right)   \\

• So –

 \\ \sf  \:  \:   =  \:  \:  \dfrac{2 \sin \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) \cos \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) }{1 - \left[ 1 - 2  \sin^{2}  \left( \dfrac{\pi}{4}  -  \dfrac{ \theta}{2} \right) \right]} \\

 \\ \sf  \:  \:   =  \:  \:  \dfrac{2 \sin \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) \cos \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) }{1 -  1 + 2  \sin^{2}  \left( \dfrac{\pi}{4}  -  \dfrac{ \theta}{2} \right) } \\

 \\ \sf  \:  \:   =  \:  \:  \dfrac{2 \sin \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) \cos \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) }{ 2  \sin^{2}  \left( \dfrac{\pi}{4}  -  \dfrac{ \theta}{2} \right) } \\

 \\ \sf  \:  \:   =  \:  \:  \dfrac{ \sin \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) \cos \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) }{   \sin^{2}  \left( \dfrac{\pi}{4}  -  \dfrac{ \theta}{2} \right) } \\

 \\ \sf  \:  \:   =  \:  \:  \dfrac{ \cos \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) }{   \sin \left( \dfrac{\pi}{4}  -  \dfrac{ \theta}{2} \right) } \\

 \\ \sf  \:  \:   =  \:  \:  \cot \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) \:  \:  \:  \left[ \:  \:  \because \:  \: \dfrac{ \cos( \theta) }{ \sin( \theta) }   =  \cot( \theta)  \right]\\

• We also know that –

 \\ \sf  \:  \longrightarrow  \:  \:  \cot ( \theta) =  \tan\left( \dfrac{ \pi}{2} -  \theta \right) \\

• So that –

 \\ \sf  \:  \:   =  \:  \:  \tan \left \{  \dfrac{\pi}{2}  - \left( \dfrac{ \pi}{4} -   \dfrac{\theta }{2} \right) \right \} \\

 \\ \sf  \:  \:   =  \:  \:  \tan \left \{  \dfrac{\pi}{2}  -  \dfrac{ \pi}{4}  +  \dfrac{\theta }{2}  \right \} \\

 \\ \sf  \:  \:   =  \:  \:  \tan \left ( \dfrac{ \pi}{4}  +  \dfrac{\theta }{2}  \right) \\

 \\ \sf  \:  \:   =  \:  \:  R.H.S . \\

 \\ \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:{ \underbrace{ \sf \: Hence \:  \: proved}}  \\

Answered by Anonymous
53

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger \: {\sf{  \frac{sin \theta}{1 - sin \theta}  = tan \bigg( \frac{\pi}{4} +  \frac{ \theta}{2} \bigg)  }} \\ \\

{\bf{\blue{\underline{Now:}}}}

Take L.H.S

 {\sf{ L.H.S  = \frac{sin \theta}{1 - sin \theta} }} \\ \\

 {\sf{   = \frac{sin  \bigg( \frac{\pi}{2} -  \theta \bigg) }{1 - cos \bigg( \frac{\pi}{2}  -  \theta \bigg)} }} \\ \\

  \dagger  \: \boxed{\sf{ sin2 \theta = 2sin \theta \: cos \theta}} \\ \\

  \dagger  \: \boxed{\sf{1  -    2{sin}^{2} \theta =  {cos}2 \theta }} \\ \\

 {\sf{  =  \frac{2sin \bigg( \frac{\pi}{4} -  \frac{ \theta}{2}  \bigg)cos \bigg( \frac{\pi}{4} -  \frac{ \theta }{2}  \bigg)  }{1 - 1 - 2 {sin}^{2}  \theta \bigg( \frac{\pi}{4} -  \frac{ \theta}{2} \bigg)  } }} \\ \\

 {\sf{  =  \frac{2sin \bigg( \frac{\pi}{4} -  \frac{ \theta}{2}  \bigg)cos \bigg( \frac{\pi}{4} -  \frac{ \theta }{2}  \bigg)  }{ 2 {sin}^{2}  \theta \bigg( \frac{\pi}{4} -  \frac{ \theta}{2} \bigg)  } }} \\ \\

 {\sf{  =  \frac{ \cancel2sin \bigg( \frac{\pi}{4} -  \frac{ \theta}{2}  \bigg)cos \bigg( \frac{\pi}{4} -  \frac{ \theta }{2}  \bigg)  }{  \cancel2 {sin}^{2}  \theta \bigg( \frac{\pi}{4} -  \frac{ \theta}{ 2} \bigg)  } }} \\ \\

 {\sf{  =  \frac{sin \bigg( \frac{\pi}{4} -  \frac{ \theta}{2}  \bigg)cos \bigg( \frac{\pi}{4} -  \frac{ \theta }{2}  \bigg)  }{  {sin}^{2}  \theta \bigg( \frac{\pi}{4} -  \frac{ \theta}{ 2} \bigg)  } }} \\ \\

 {\sf{  =  \frac{sin \bigg( \frac{\pi}{4} -  \frac{ \theta}{2}  \bigg)cos \bigg( \frac{\pi}{4} -  \frac{ \theta }{2}  \bigg)  }{  {sin}  \bigg( \frac{\pi}{4} -  \frac{ \theta}{ 2} \bigg)  {sin}  \bigg( \frac{\pi}{4} -  \frac{ \theta}{ 2} \bigg) } }} \\ \\

 {\sf{  =  \frac{ \cancel{sin \bigg( \frac{\pi}{4} -  \frac{ \theta}{2}  \bigg)}cos \bigg( \frac{\pi}{4} -  \frac{ \theta }{2}  \bigg)  }{   \cancel{{sin}  \bigg( \frac{\pi}{4} -  \frac{ \theta}{ 2} \bigg) } {sin}  \bigg( \frac{\pi}{4} -  \frac{ \theta}{ 2} \bigg) } }} \\ \\

 {\sf{  =  \frac{cos \bigg( \frac{\pi}{4} -  \frac{ \theta }{2}  \bigg)  }{    {sin}  \bigg( \frac{\pi}{4} -  \frac{ \theta}{ 2} \bigg) } }} \\ \\

 {\sf{  =  cot \bigg( \frac{\pi}{4} -  \frac{ \theta }{2}  \bigg)   }} \\ \\

 {\sf{  =  tan\bigg( \frac{\pi}{2} -  \theta   \bigg)   }} \\ \\

 {\sf{  =  tan\bigg( \frac{\pi}{2} -  \frac{\pi}{4}     -  \frac{ \theta}{2} \bigg)   }} \\ \\

 {\sf{  =  tan\bigg(  \frac{\pi}{4}      +   \frac{ \theta}{2} \bigg)   }} \\ \\

Hence proved!!

L.H.S = R.HS

Similar questions