Math, asked by sheil2, 1 year ago

solve this as soon as possible

Attachments:

Answers

Answered by rakeshmohata
10
Hope You like My Process
=======================

Formula used is Pythagoras form
==============================

=> (Hypotenuse)² = (base)²+(perpendicular)²
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

Given
----------
=> AB = c

=> BC= a

=> AC = b

=> AD= p

=> AE = h

=> ED = x

=> BD= BC =a/2
_________________
Now for ∆ ADE
------------------------
=>(hypotenuse)² = (perpendicular)²+(base)²

=> p² = h² + x²

=> h² = p² - x² ____(1)
_________________
1)

for ∆ AEC
-----------------
=>(hypotenuse)² = (perpendicular)²+(base)²

<br />=&gt; b^2 = h^2 + ( \frac{a}{2} +x)^2 \\  \\ <br /><br />=&gt; b^2 = p^2 -x^2 + (  \frac{ {a}^{2} }{4} + 2. \frac{ {}a}{2} .x +   {x}^{2} ) \\  \\  =  &gt;  \boxed{  \bf {b}^{2}  =  {p}^{2}  + ax +  \frac{ {a}^{2} }{4} } \:  \:  \: (proved)

____________________________
2) For ∆ ABE
---------------------
=>(hypotenuse)² = (perpendicular)²+(base)²

 =  &gt;  {c}^{2}  =  {h}^{2}  + ( { \frac{a}{2} - x) }^{2}  \\  \\  =  &gt;  {c}^{2}  =  {p}^{2}  -  {x}^{2}  + (  \frac{ {a}^{2} }{4}   - 2. \frac{a}{2} x +  {x}^{2} ) \\  \\  =  &gt;  \boxed{  \bf{c}^{2}  =  {p}^{2}  - ax +  \frac{ {a}^{2} }{4} } \:  \:  \: (proved)
____________________________
3)

sum of b² and c²
==============
 \\  =  &gt;  {b}^{2}  +  {c}^{2}  =  ({p}^{2} + ax +  \frac{ {a}^{2} }{4}  ) +  {( {p}^{2}  - ax +  \frac{ {a}^{2} }{4} )} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \boxed{  \bf \: 2{p}^{2} +  \frac{ {a}^{2} }{2}  } \:  \:  \:  \:  \: (proved)
__________,________________
Hope This Is your required answer

proud to help u
Attachments:
Similar questions