Math, asked by ved8258, 7 months ago

solve this ASAP.....​

Attachments:

Answers

Answered by pg2122777
1

Answer:

There is something wrong in the question...I have tried it many times... may be any misprint...plz check it...

Answered by Anonymous
0

CORRECT QUESTION :-

PROVE THAT -

[ tanking ∅ as a ]

 \rm \: {tan \: a - cot \: a =  \dfrac{2 \: sin {}^{2}a \:   - 1}{sin \: a \times cos \: a} }

GIVEN :-

 \rm \: {LHS = tan \: a - cot \: a  }

\rm \: { R HS=  \dfrac{2 \: sin {}^{2}a \:   - 1}{sin \: a \times cos \: a} }

TO FIND :-

 \rm \: {tan \: a - cot \: a =  \dfrac{2 \: sin {}^{2}a \:   - 1}{sin \: a \times cos \: a} }

SOLUTION :-

now taking LHS :-

we know that

 \implies \boxed{\rm{tan \: x =  \dfrac{sin \: x}{cos \: x} }}

and

\implies \boxed{\rm{cot\: x =  \dfrac{cos \: x}{sin \: x} }}

hence putting them as follow ,

\implies \rm{\dfrac{sin \: a}{cos \: a}  - \dfrac{cos \: a}{sin \: a}  }

\implies \rm{ \:  \: \dfrac{sin  {}^{2}  a -  {cos}^{2}a \:  \:  }{cos \: a  \: . \: sin \: a}    }

now we know that according to trignometric identies

\implies \boxed{\rm{ {cos}^{2} \: x =  1 -  {sin}^{2}x }}

hence ,

\implies \rm{ \:  \: \dfrac{sin  {}^{2}  a -  (1 -  {sin}^{2}a)  \:  \:  }{cos \: a  \: . \: sin \: a}    }

\implies \rm{ \:  \: \dfrac{sin  {}^{2}  a -  1  +  {sin}^{2}a  \:  \:  }{cos \: a  \: . \: sin \: a}    }

\implies \rm{ \dfrac{2sin  {}^{2}  a -  1    }{sin \: a  \: . \:co s\: a}    }

hence , LHS = RHS

and

  \implies \boxed{ \boxed{\rm \: {tan \: a - cot \: a =  \dfrac{2 \: sin {}^{2}a \:   - 1}{sin \: a \times cos \: a} }}}

OTHER INFORMATION :-

TRIGNOMETRIC IDENTITIES

  • sin²∅ + cos²∅ = 1

  • sec²∅ - tan²∅ = 1

  • cosec²∅ - cot²∅ = 1

TRIGNOMETRIC RATIOS

  • sin ∅ = 1 / cosec ∅

  • cos ∅ = 1 / sec ∅

  • tan ∅ = 1 / cot ∅

TRIGNOMETRIC COMPLEMENTRY ANGLES

  • sin ∅ = cos ( 90 - ∅ )

  • cos ∅ = sin ( 90 - ∅ )

  • sec ∅ = cosec ( 90 - ∅ )

  • cosec ∅ = sec ( 90 - ∅ )

  • tan ∅ = cot ( 90 - ∅ )

  • cot ∅ = tan ( 90 - ∅ )
Similar questions