solve this by quadratic equations
Answers
❏ Answer:-
Given:-
Answer:
∙(x−21+x−12)=x6
\mapsto\normalsize\sf{\:\left(\dfrac{(x-1)+2(x-2)}{(x-1)(x-2)}\right)\:=\:\dfrac{6}{x}}↦((x−1)(x−2)(x−1)+2(x−2))=x6
\mapsto\normalsize\sf{\:\left(\dfrac{(x-1+2x-4)}{(x^2+2-x-2x)}\right)\:=\:\dfrac{6}{x}}↦((x2+2−x−2x)(x−1+2x−4))=x6
\mapsto\normalsize\sf{\:\dfrac{3x-5}{x^2-3x+2}\:=\:\dfrac{6}{x}}↦x2−3x+23x−5=x6
\mapsto\normalsize\sf{\:\dfrac{x(3x-5)}{6(x^2-3x+2)}\:=\:1}↦6(x2−3x+2)x(3x−5)=1
\mapsto\normalsize\sf{\:\dfrac{(3x^2-5x)}{(6x^2-18x+12)}\:=\:1}↦(6x2−18x+12)(3x2−5x)=1
\mapsto\normalsize\sf{\:(3x^2-5x)\:=\:(6x^2-18x+12)}↦(3x2−5x)=(6x2−18x+12)
\mapsto\normalsize\sf{\:(6x^2-18x+12-3x^2+5x)\:=\:0}↦(6x2−18x+12−3x2+5x)=0
\mapsto\normalsize\sf{\:(3x^2-13x+12)\:=\:0}↦(3x2−13x+12)=0
\mapsto\normalsize\sf{\:(3x^2-9x-4x+12)\:=\:0}↦(3x2−9x−4x+12)=0
\mapsto\normalsize\sf{\:3x(x-3)-4(x-3)\:=\:0}↦3x(x−3)−4(x−3)=0
\mapsto\normalsize\sf{\:(x-3)(3x-4)\:=\:0}↦(x−3)(3x−4)=0
\mapsto\normalsize\sf{\:(x-3)\:=\:0\:\:\:Or\:\:(3x-4)\:=\:0}↦(x−3)=0Or(3x−4)=0
\mapsto\normalsize\pink{\sf{\:x\:=\:3\:\:\:\:Or\:\:\:x\:=\dfrac{4}{3}}}↦x=3Orx=34