Math, asked by Anonymous, 10 months ago

Solve this by using multiple or sub multiple angle formula.
Answer fast... ​

Attachments:

Answers

Answered by Anonymous
1

Explanation :-

Sin (O/2) - {Cos(O/2) + Sin(O/2)}²

= ------------------------------------------------------

Cos (O/2) - {Cos(O/2) + Sin(O/2)}²

Sin(O/2) - Cos(O/2) - Sin(O/2)

= ----------------------------------------------

Cos(O/2) - Cos(O/2) - Sin(O/2)

- Cos(O/2)

= ------------------

- Sin(O/2)

=> Cos(O/2) / Sin(O/2)

=> Cot(O/2)

Answered by ramkumarpeddeti
0

PROOF :

Lets take 0 in place of( teta )

   Sin (O/2) - √{Cos(O/2) + Sin(O/2)}²

= ------------------------------------------------------

   Cos (O/2) - √{Cos(O/2) + Sin(O/2)}²

    Sin(O/2) - Cos(O/2) - Sin(O/2)

= ----------------------------------------------

    Cos(O/2) - Cos(O/2) - Sin(O/2)

   - Cos(O/2)

= ------------------

    - Sin(O/2)

=> Cos(O/2) / Sin(O/2)

=> Cot(O/2)

HENCE PROVED

Similar questions