Solve this by using multiple or sub multiple angle formula.
Answer fast...
Answers
Explanation :-
Sin (O/2) - √{Cos(O/2) + Sin(O/2)}²
= ------------------------------------------------------
Cos (O/2) - √{Cos(O/2) + Sin(O/2)}²
Sin(O/2) - Cos(O/2) - Sin(O/2)
= ----------------------------------------------
Cos(O/2) - Cos(O/2) - Sin(O/2)
- Cos(O/2)
= ------------------
- Sin(O/2)
=> Cos(O/2) / Sin(O/2)
=> Cot(O/2)
PROOF :
Lets take 0 in place of( teta )
Sin (O/2) - √{Cos(O/2) + Sin(O/2)}²
= ------------------------------------------------------
Cos (O/2) - √{Cos(O/2) + Sin(O/2)}²
Sin(O/2) - Cos(O/2) - Sin(O/2)
= ----------------------------------------------
Cos(O/2) - Cos(O/2) - Sin(O/2)
- Cos(O/2)
= ------------------
- Sin(O/2)
=> Cos(O/2) / Sin(O/2)
=> Cot(O/2)
HENCE PROVED