Math, asked by gurpreetsingh38060, 5 months ago

solve this by using substitution method

Attachments:

Answers

Answered by shambhuroy27121982
2

Step-by-step explanation:

the avobe picture is the answer of your question

Attachments:
Answered by LilBabe
73

Question

 \tt \: 9x - 10y =  - 12 \\  \tt  \: 2x + 3y = 13 \:  \:  \:  \:  \:  \:

Solve by substitution method.

Answer

  \bf \: 9x - 10y =  - 12 \\  \bf  \: 2x + 3y = 13 \:  \:  \:  \:  \:  \:

Let's calculate

  \rm \: 9x - 10y =  - 12 \\  \rm   \underline{2x + 3y = 13   \:     } \\  \rm-7x-13y=-26 \\

 \implies\rm7x + 13y=26 \\  \rm\implies\rm13y =  26 - 7x  \\  \implies\rm \: y =   \frac{26 - 7x}{13}

Putting value of y in the above mentioned

 \bf  \: 2x + 3y = 13

 \leadsto \tt  \: 2x + 3(\rm  \frac{26 - 7x}{13}) = 13

\leadsto \tt  \: 2x + (\rm  \frac{72 - 21x}{13}) = 13

 \leadsto \tt  \: (\rm  \frac{26x + 72 - 21x}{13}) = 13

 \leadsto \tt  \: (\rm  \frac{5x + 72 }{13}) = 13

  \leadsto \rm \: 5x  + 72 = 169

 \leadsto \rm \: 5x  = 169 - 72

 \leadsto \rm \: 5x = 97

 \leadsto \rm \: x =  \frac{97}{5}

Again

 \bf  \: 2x + 3y = 13

  \leadsto \tt  \: 2x + 3y = 13

\leadsto \tt  \: 2( \frac{97}{5 })+ 3y = 13

 \leadsto \frac{194}{5} + 3y =  13

   \tt\leadsto 3y =  13 - \frac{194}{5}

    \tt\leadsto 3y =  \frac{65 - 194}{5}

 \tt\leadsto y =  \frac{65 - 194}{15}

 \tt\leadsto y =  \frac{ - 129}{ \:  \: 15}

Hence

  \color{brown}\boxed{ x =  \frac{97}{5}}

 {\tt \color{cyan}\boxed{ y =  \frac{ - 129}{15}}}


gurpreetsingh38060: thanks
Similar questions