Math, asked by kishorshyam1972, 11 months ago

solve this C: Calculus:Integral: Substitution:
 \displaystyle \int \frac{5 +  \sqrt{x} }{2 -  \sqrt{x} }  \: dx

Answers

Answered by bendingfigure
34

\mathfrak{\huge{\blue{\underline{\underline{Answer:-}}}}}

</h2><p></p><h2></h2><h2>- x−14√</h2><h2>x</h2><h2></h2><h2> −28ln(2−√</h2><h2>x</h2><h2></h2><h2> )+C

\mathfrak{\huge{\blue{\underline{\underline{Explanation:-}}}}}

\int \frac{5+\sqrt{x}}{2-\sqrt{x}} \, dx∫

2−√

x

, x={u}^{2}x=u

2

, and dx=2u \, dudx=2udu

2 Substitute variables from above.

\int \frac{5+u}{2-u}\times 2u \, du∫

2−u

5+u

×2udu

3 Use Constant Factor Rule: \int cf(x) \, dx=c\int f(x) \, dx∫cf(x)dx=c∫f(x)dx.

2\int \frac{u(5+u)}{2-u} \, du2∫

2−u

u(5+u)

du

4 Expand \frac{u(5+u)}{2-u}

2−u

u(5+u)

.

2\int \frac{5u+{u}^{2}}{2-u} \, du2∫

2−u

5u+u

2

du

5 Polynomial Division

2\int -u-7+\frac{14}{2-u} \, du2∫−u−7+

2−u

14

du

6 Use Sum Rule: \int f(x)+g(x) \, dx=\int f(x) \, dx+\int g(x) \, dx∫f(x)+g(x)dx=∫f(x)dx+∫g(x)dx.

2(\int -u-7 \, du+\int \frac{14}{2-u} \, du)2(∫−u−7du+∫

2−u

14

du)

7 Use Power Rule: \int {x}^{n} \, dx=\frac{{x}^{n+1}}{n+1}+C∫x

n

dx=

n+1

x

n+1

+C.

2(-\frac{{u}^{2}}{2}-7u+\int \frac{14}{2-u} \, du)2(−

2

u

2

−7u+∫

2−u

14

du)

8 Use Constant Factor Rule: \int cf(x) \, dx=c\int f(x) \, dx∫cf(x)dx=c∫f(x)dx.

2(-\frac{{u}^{2}}{2}-7u+14\int \frac{1}{2-u} \, du)2(−

2

u

2

−7u+14∫

2−u

1

du)

9 Use Integration by Substitution on \int \frac{1}{2-u} \, du∫

2−u

1

du.

Let w=2-uw=2−u, dw=-dudw=−du

10 Using ww and dwdw above, rewrite \int \frac{1}{2-u} \, du∫

2−u

1

du.

\int -\frac{1}{w} \, dw∫−

w

1

dw

11 The derivative of \ln{x}lnx is \frac{1}{x}

x

1

.

-\ln{w}−lnw

12 Substitute w=2-uw=2−u back into the original integral.

-\ln{(2-u)}−ln(2−u)

13 Rewrite the integral with the completed substitution.

2(-\frac{{u}^{2}}{2}-7u-14\ln{(2-u)})2(−

2

u

2

−7u−14ln(2−u))

14 Expand.

-{u}^{2}-14u-28\ln{(2-u)}−u

2

−14u−28ln(2−u)

15 Substitute u=\sqrt{x}u=√

x

back into the original integral.

-{\sqrt{x}}^{2}-14\sqrt{x}-28\ln{(2-\sqrt{x})}−√

x

2

−14√

x

−28ln(2−√

x

)

16 Add constant.

-x-14\sqrt{x}-28\ln{(2-\sqrt{x})}+C−x−14√

x

−28ln(2−√

x

)+C

____________________________

Answered by rishu6845
0

plzz give me brainliest ans and plzzzz follow me

Attachments:
Similar questions