Math, asked by Anonymous, 1 month ago

Solve this complex numbers questions.

Also please check my other questions for answering.​

Attachments:

Answers

Answered by krishme04
0

Answer:

option D

Step-by-step explanation:

because Cos( teeta )+ i ( Sin (teeta)) in which power 3 and 4 are subtracted and became 1

Answered by mathdude500
5

Given Question :-

Value of

\rm :\longmapsto\:\dfrac{(cos\theta + isin\theta)^{4} }{ {(cos\theta -isin\theta) }^{3} }

 \sf \:  \:  \:  \:  \: (a) \:  \: cos5\theta + isin5\theta

 \sf \:  \:  \:  \:  \: (b) \:  \: cos7\theta + isin7\theta

 \sf \:  \:  \:  \:  \: (c) \:  \: cos4\theta + isin4\theta

 \sf \:  \:  \:  \:  \: (d) \:  \: cos\theta + isin\theta

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{(cos\theta + isin\theta)^{4} }{ {(cos\theta -isin\theta) }^{3} }

can be rewritten as

\rm \:  = \:\dfrac{(cos\theta + isin\theta)^{4} }{ {(cos( - \theta) +  isin( - \theta)) }^{3} }

We know, that

By Euler Form

\rm :\longmapsto\:\boxed{ \tt{ \: cos\theta + isin\theta =  {e}^{i\theta} }}

So, using this, we get

\rm \:  =  \:\dfrac{ {( {e}^{i\theta} )}^{4} }{ {( {e}^{ - i\theta)} }^{3} }

\rm \:  =  \:\dfrac{ {e}^{i4\theta} }{ {e}^{ - i3\theta} }

\rm \:  =  \: {e}^{4i\theta  -  ( - 3i\theta)}

\rm \:  =  \: {e}^{4i\theta + 3i\theta}

\rm \:  =  \: {e}^{i7\theta}

\rm \:  =  \: {e}^{i(7\theta)}

\rm \:  =  \:cos7\theta + i \: sin7\theta

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{(cos\theta + isin\theta)^{4} }{ {(cos\theta -isin\theta) }^{3} } = cos7\theta + isin7\theta \: }}

So,

  • Option (b) is Correct
Similar questions