Math, asked by hkrishnahazrape9rwv, 1 month ago

solve this differential equation guys help me to solve it and please try to write it step wise
(spam answers will be deleted)​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

( {x}^{2}  + xy)dy = ( {x}^{2}  +  {y}^{2} )dx \\

 \implies \frac{dy}{dx}  =  \frac{ {x}^{2} +  {y}^{2}  }{ {x}^{2} + xy }  \\

Let \: y = vx \\  \frac{dy}{dx}  = v + x \frac{dv}{dx}

 \implies v + x \frac{dv}{dx}   =  \frac{ {x}^{2} +  {x}^{2} {v}^{2}   }{ {x}^{2} +  {x}^{2}v  }  \\

 \implies v + x \frac{dv}{dx}   =  \frac{ {x}^{2}(1 +   {v}^{2}   )}{ {x}^{2}(1 +  v  )}  \\

 \implies x \frac{dv}{dx}   =  \frac{ (1 +   {v}^{2}   )}{ (1 +  v  )} - v  \\

 \implies x \frac{dv}{dx}   =  \frac{ (1 +   {v}^{2}  - v -  {v}^{2}   )}{ (1 +  v  )}  \\

 \implies x \frac{dv}{dx}   =  \frac{ (1  - v  )}{ (1 +  v  )}  \\

 \implies \frac{(1 + v)}{(1 - v)}  dv =  dx \\

Integrating both sides,

 \implies   \int\frac{(1 + v)}{(1 - v)}  dv =   \int \: dx \\

Let \:  \: v =  \cos(2 \alpha )  \\ dv =  - 2 \sin(2 \alpha ) d \alpha

 \implies   -  \int\frac{(1 +  \cos(2 \alpha ) )}{(1 -  \cos( 2\alpha ) )}  .2 \sin( 2\alpha ) d \alpha =  x + c\\

 \implies   - 4 \int\frac{ \cos^{2} ( \alpha ) }{ \sin ^{2} ( \alpha ) }  .\sin( \alpha )  \cos( \alpha )  d \alpha =  x + c\\

 \implies   - 4 \int\frac{ (1 - \sin^{2} ( \alpha ) )}{ \sin ( \alpha ) }  .  \cos( \alpha )  d \alpha =  x + c\\

Putting sin(α) = t => cos(α) dα= dt

 \implies   - 4 \int\frac{ 1 - t^{2} }{ t}   d t =  x + c\\

 \implies   - 4 \int\frac{ 1}{ t}   d t  + 4 \int \: t \: dt=  x + c\\

 \implies  - 4 ln(t)  + 2 {t}^{2}   =  x + c

 \implies  - 4 ln( \sin( \alpha ) )  + 2 { \sin }^{2} ( \alpha )  =  x + c \\

 \implies  - 4 ln(  \sqrt{\frac{1 - v}{2} })  + (1 - v) =  x + c \\

 \implies  - 2 ln( \frac{1 - v}{2} )  + (1 - v) =  x + c \\

 \implies  - 2 ln( 1 - v )  + 2 ln(2)  + (1 - v) =  x + c \\

 \implies  - 2 ln( 1 - v )  + (1 - v) =  x + c \\

 \implies  - 2 ln( 1 -  \frac{y}{x}  )  + (1 -  \frac{y}{x} ) =  x + c \\

 \implies  - 2 ln( x- y )  + 2 ln(x)  +  \frac{x - y}{x}  =  x + c \\

Similar questions