Math, asked by BrainlyPopularman, 4 months ago

Solve this Differentiate equation –

  \\  \bf {x}^{2}  \dfrac{ {d}^{2}y}{ {dx}^{2} } + 3x \dfrac{dy}{dx} + y =  \dfrac{1}{ {(1 - x)}^{2} } \\

Answers

Answered by Anonymous
223

♣ Qᴜᴇꜱᴛɪᴏɴ :

Solve this Differentiate equation –

\sf{\displaystyle\mathrm{x}^2\:\frac{\mathrm{d}^2\:\mathrm{y}}{\mathrm{dx}^2}+3\:\mathrm{x}\:\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}=\frac{1}{\left(1-\mathrm{x}\right)^2}}

★═════════════════★  

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{y=\frac{c_1}{x}+\frac{c_2\ln \left(x\right)}{x}+\frac{\ln \left(x\right)-\ln \left(x-1\right)}{x}}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\displaystyle x^2\frac{d^2y}{dx^2}+3x\frac{dy}{dx}+y=\frac{1}{\left(1-x\right)^2}}

Second order Euler non-homogeneous differential equation

A second order Euler non-homogeneous ODE has the form of  ax²y''+ bxy' + cy = gx

\sf{\mathrm{Substitute\quad }\dfrac{d^2y}{dx^2},\:\dfrac{dy}{dx}\mathrm{\:with\:}y''\:,\:y'\:}

\sf{x^2y''\:+3xy'\:+y=\dfrac{1}{\left(1-x\right)^2}}

General solution for a(x)y''+ b(x)y'+ c(x)y = g(x)

\mathrm{The\:general\:solution\:to\:}a\left(x\right)y''+b\left(x\right)y'+c\left(x\right)y=g\left(x\right)\mathrm{\:can\:be\:written\:as}

y=y_h+y_p

y_h\mathrm{\:is\:the\:solution\:to\:the\:homogeneous\:ODE\:}a\left(x\right)y''+b\left(x\right)y'+c\left(x\right)y=0

y_p\mathrm{,\:the\:particular\:solution,\:is\:any\:function\:that\:satisfies\:the\:non-homogeneous\:equation}\:

\bigstar\:\sf{Find \:$y_{h}$ by solving $x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0$}

Second order Euler homogeneous differential equation

A second order Euler homogeneous ODE has the form of  ax²y''+ bxy' + cy = 0

\text { For an equation } a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0, \text { assume a solution of the form } x^{r}

\mathrm{Rewrite\:the\:equation\:with\:}y=x^r

x^2\left(\left(x^r\right)\right)''\:+3x\left(\left(x^r\right)\right)'\:+x^r=0

\implies x^r\left(r^2+2r+1\right)=0

\text { For one real root } r \text { , the general solution takes the form: } y=c_{1} x^{r}+c_{2} \ln (x) x^{r}

c_1x^{-1}+c_2\ln \left(x\right)x^{-1}

y=\dfrac{c_1}{x}+\dfrac{c_2\ln \left(x\right)}{x}

\bigstar\:\text { Find } y_{p} \text { that satisfies } x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\dfrac{1}{(1-x)^{2}}

x^2y''\:+3xy'\:+y=\dfrac{1}{\left(1-x\right)^2}

\mathrm{Divide\:both\:sides\:by\:}x^2

\displaystyle y''\:+\frac{3y'\:}{x}+\frac{y}{x^2}=\frac{1}{x^2\left(1-x\right)^2}

\text{Where $y_{1}$ and $y_{2}$ are solutions of homogeneous equation}\\ $y_{h}=c_{1} y_{1}+c_{2} y_{2}$$u_{1}$ and $u_{2}$ are solutions to the system of equations:

\left(\begin{array}{c}\prime_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\\\u_{1}^{\prime}+u_{2} y_{2}^{\prime}=g(x)\end{array}\right)

Which implies :

u_1=\int \:-\dfrac{y_2g\left(x\right)}{W\left(y_1,\:y_2\right)}dx

u_2=\int \dfrac{y_1g\left(x\right)}{W\left(y_1,\:y_2\right)}dx

\mathrm{Where\:Wronskian}\:W\left(y_1,\:y_2\right)=y_1y_2^{'\:}-y_1^{'\:}y_2

Homogeneous solutions :

y_1=\dfrac{1}{x}

y_2=\dfrac{\ln \left(x\right)}{x}

\begin{array}{l}y_{1}^{\prime}: \quad-\dfrac{1}{x^{2}} \\\\y_{2}: \dfrac{1-\ln (x)}{x^{2}}\end{array}

W\left(y_1,\:y_2\right)=y_1y_2^{'\:}-y_1^{'\:}y_2

\implies\displaystyle W\left(y_1,\:y_2\right)=\frac{1}{x}\cdot \frac{1-\ln \left(x\right)}{x^2}-\left(-\frac{1}{x^2}\right)\frac{\ln \left(x\right)}{x}

\implies W\left(y_1,\:y_2\right)=\dfrac{1}{x^3}

\displaystyle u_1=\int \:-\frac{y_2g\left(x\right)}{W\left(y_1,\:y_2\right)}dx

\implies\displaystyle u_1=\int \:-\frac{\frac{\ln \left(x\right)}{x}\cdot \frac{1}{x^2\left(1-x\right)^2}}{\frac{1}{x^3}}dx

\implies u_1=-\dfrac{\ln \left(x\right)}{1-x}+\ln \left(x\right)-\ln \left(x-1\right)

u_2=\int \dfrac{y_1g\left(x\right)}{W\left(y_1,\:y_2\right)}dx

\implies u_2=\int \dfrac{\frac{1}{x}\cdot \dfrac{1}{x^2\left(1-x\right)^2}}{\dfrac{1}{x^3}}dx

\implies\:u_2=\dfrac{1}{1-x}

\bf{y_p=u_1y_1+u_2y_2}

\displaystyle y_p=\left(-\frac{\ln \left(x\right)}{1-x}+\ln \left(x\right)-\ln \left(x-1\right)\right)\frac{1}{x}+\frac{1}{1-x}\cdot \frac{\ln \left(x\right)}{x}

\implies\displaystyle\:y_p=\frac{\ln \left(x\right)-\ln \left(x-1\right)}{x}

\sf{\text { A particular solution } y_{p} \text { to } x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\dfrac{1}{(1-x)^{2}} \text { is: }}

y_p=\dfrac{\ln \left(x\right)-\ln \left(x-1\right)}{x}

\mathrm{The\:general\:solution\:}y=y_h+y_p\mathrm{\:is:}

\boxed{\sf{y=\frac{c_1}{x}+\frac{c_2\ln \left(x\right)}{x}+\frac{\ln \left(x\right)-\ln \left(x-1\right)}{x}}}

Refer to attachment for plotting

Attachments:

EliteSoul: Great
amitkumar44481: Great :-)
MisterIncredible: Outstanding Answer
Anonymous: Awesome :)
Cynefin: Perfect :)
Answered by ag5578112
85

\bf\huge{\underline{\pink{ ♣ Given }}}

 \frac{x²d²y}{dx²}  + 3 \times  \frac{dy}{dx}  + y =  \frac{1}{(l - x)²}  \\Let x = et \\

➡log \: x = t \: and \: we \: take \frac{d}{d} D\\➡[D(D-1+3D+1] y = (\frac{1}{1}-x)² \\➡(D + 1)²y =  \frac{1}{(1 - x)²} ➡ (1) \\ The \: homogeneous \: solution \\ will \: be \: (0 + 1)²

C.F = (c, +  \: c² \: t) {e}^{ - t}  \\ [{e}^{ - t} = ({e}^{ t})¹ =  {x}^{ - 1} ]

Now,  \\ P. I =  \frac{1}{(D + 1)} \frac{1}{(D + 1)} {(1 - x)}^{ - 2}  \\  = \frac{1}{(D + 1)} {x}^{ - 1}   {(1 - x)}^{ - 1}  \\  = \frac{1}{(D + 1)} \:  {x}^{ - 1} {(1 - x)}^{ - 2}dx \\  =  {x}^{ - 1}  {x}^{ - 1} {(1 -  x)}^{ - 1} dx \\

=  {x}^{ - 1} \frac{dx}{x(1 - x)}  \\  =  {x}^{ - 1}[ \frac{1}{x} + \frac{1}{1 - x} ]dm \\  = {x}^{ - 1}[log \: x - log(1 - x)] \\  = {x}^{ - 1} \: log [ \frac{x}{(1 - x)} ]

The solution is

y = ( {c}^{1}  +  {c}^{2}  \: log \: x) {x}^{ - 1}  + {x}^{ - 1} log [x/(1 - x)]

Formula:-

simple \: way \: to \: calulate \: P. I.  \\ here \: in \: this \: case \\ y = \frac{1}{(D + 1)}y\frac{1}{(D + 1)}y\frac{1}{(x - 2)}² \\ Next \: step \: is \: to \: conuert \: that \\ ( \frac{1}{D + y} ) \: to \:  {x}^{ - 1}  \: as \: we \: got \: in \: CF \\ :e, P. I. =  \frac{1}{(D +D )} {x}^{ - 1}  \\

\frac{1}{(x - 2)} ² \frac{1}{x}  - 1 \: dx \\ then \: we \: get \: to \: simply \: it \: and \\ again \: convert \: this \:  \frac{1}{(D + 1)}  \: to \:  \\  {x}^{ - 1}

\bf{\underline{\green{ Hope \: it \: helps \: you }}}

Similar questions