Physics, asked by abhijeetvshkrma, 4 months ago

Solve this don't solve if u don't know ​

Attachments:

Answers

Answered by IdyllicAurora
12

Concept :-

Here the concept of Ohm's Law has been used. Firstly we will calculate the equivalent resistance of different parts and then combine them to get total resistance.

★ Formula Used :-

\;\boxed{\sf{\pink{R_{eq_{s}}\;=\;\bf{R_{1}\:+\:R_{2}\:+\:...\:+\:R_{n}}}}}

\;\boxed{\sf{\pink{\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{R_{1}}\;+\;\dfrac{1}{R_{2}}\;+\;...\;+\;\dfrac{1}{R_{n}}}}}}

\;\boxed{\sf{\pink{R\;=\;\bf{\dfrac{Votage}{I}}}}}

____________________________________________

★ Solution :-

Given,

» Potential Difference of circuit = Voltage = 28 V

From attached image we see, that we have named different resistances. Let's look at it.

» Resistance a = 5 Ω

» Resistance b = 3 Ω

» Resistance c = 3 Ω

» Resistance d = 4 Ω

» Resistance e = 3 Ω

» Resistance f = 2 Ω

» Resistance g = 4 Ω

» Resistance h = 10 Ω

» Resistance i = 10 Ω

» First area of circuit = ADEF

» Second area of circuit = ABCD

» Third area of circuit = CBGH

  • Let the current in the circuit be 'I'

____________________________________________

~ For the Equivalent Resistance of Part ADFE ::

Here we see that equivalent resistances we have to calculate the equivalent resistance of c, d and e in series which is in parallel with resistance h.

Then,

• For series we know that,

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{R_{1}\:+\:R_{2}\:+\:...\:+\:R_{n}}}

Now applying values, we get

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{c\:+\:d\:+\:e}}

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{3\:+\:4\:+\:3}}

\;\bf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{\green{10\;\;\Omega}}}

• Now for parallel combination,

\;\sf{\rightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{R_{1}}\;+\;\dfrac{1}{R_{2}}\;+\;...\;+\;\dfrac{1}{R_{n}}}}

\;\sf{\rightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{h}\;+\;\dfrac{1}{10}}}

\;\sf{\rightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{10}\;+\;\dfrac{1}{10}}}

\;\sf{\rightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{2}{10}}}

\;\sf{\rightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{5}}}

\;\bf{\rightarrow\;\;R_{eq_{p}}\;=\;\bf{\orange{5}}}

This is the equivalent resistance of part ADF that is 5 Ω

____________________________________________

~ For the Equivalent Resistance of Part ABCD ::

For this firstly we will calculate the resistance in series combination of resistances b, f and equivalent resistance of AD. Now this series combination will be in parallel with resistance i.

• For series, we know that

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{R_{1}\:+\:R_{2}\:+\:...\:+\:R_{n}}}

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{b\;+\;f\;+\;ADFE_{(eq)}}}

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{3\:+\:2\:+\:5}}

\;\bf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{\blue{10\;\;\Omega}}}

• For parallel combination,

\;\sf{\Longrightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{R_{1}}\;+\;\dfrac{1}{R_{2}}\;+\;...\;+\;\dfrac{1}{R_{n}}}}

\;\sf{\Longrightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{i}\;+\;\dfrac{1}{10}}}

\;\sf{\Longrightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{10}\;+\;\dfrac{1}{10}}}

\;\sf{\Longrightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{2}{10}}}

\;\sf{\Longrightarrow\;\;\dfrac{1}{R_{eq_{p}}}\;=\;\bf{\dfrac{1}{5}}}

\;\bf{\Longrightarrow\;\;R_{eq_{p}}\;=\;\bf{\red{5}}}

This is the equivalent resistance of part ABCD that is 5 Ω

____________________________________________

~ For the Equivalent Resistance of Part CBGH ::

For this we will calculate the equivalent resistance in series combination of resistance of resistance a, g and equivalent resistance of part ABCD.

Then,

• For series combination,

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{R_{1}\:+\:R_{2}\:+\:...\:+\:R_{n}}}

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{a\:+\:g\:+\:ABCD_{(eq)}}}

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{5\:+\:4\:+\:5}}

\;\sf{\rightarrow\;\;R_{eq_{s}}\;=\;\bf{\pink{14\;\;\Omega}}}

Since, we calculated this resistance by adding all other equivalent resistance of different parts of circuit, so this is the equivalent resistance of the circuit.

\;\bf{\leadsto\;\;Equivalent\;Resistance\;of\;Circuit\;=\;R\;=\;\pink{14\;\;\Omega}}

____________________________________________

~ For Total Current in the Circuit ::

By Ohm's Law, we know that

\;\sf{\mapsto\;\;R\;=\;\bf{\dfrac{Votage}{I}}}

By applying values, we get

\;\sf{\mapsto\;\;14\;=\;\bf{\dfrac{28}{I}}}

\;\sf{\mapsto\;\;I\;=\;\bf{\dfrac{28}{14}}}

\;\sf{\mapsto\;\;I\;=\;\bf{2\;\;Ampere}}

We know that, the 5 Ω resistance is connected in first position with the battery. This means the current flowing through the 5 Ω resistance will be equal to the total current of circuit.

\;\underline{\boxed{\tt{Current\;\:through\;\:5\:\Omega\;\:resistance\;=\;\bf{\purple{2\;\;Ampere}}}}}

____________________________________________

Attachments:

Asterinn: Great!
Answered by RawatPahadi
0

Answer:

of which class bro

S

e

x

x

x

x

Similar questions