Math, asked by Anonymous, 4 months ago

Solve this!!
Don't spam

Attachments:

Answers

Answered by hotcupid16
34

Consider the first equation,

 \frac{2}{x}  +  \frac{2}{3y}  =  \frac{1}{6}  \\  \\  \frac{(2  \times 3y) + 2x}{3xy}  =  \frac{1}{6} =    \\  \\  \frac{6y + 2x}{3xy}  =  \frac{1}{6}  \\  \\ 6y + 2x =  \frac{3xy}{6}  \\  \\ 6y + 2x =  \frac{xy}{2}  \\  \\ 2(6y + 2x) = xy \\  \\ 12y + 4x = xy

Let the above equation be equation 1

Consider the second equation,

 \frac{3}{x}  +  \frac{2}{y} =  0 \\  \\  \frac{3y + 2x}{xy}  = 0 \\  \\ 3y + 2x = 0 \\  \\ 3y =  - 2x \\  \\ y =  -  \frac{2x}{3}

Let the above equation be equation 2

Substitute y = - 2x/3 in equation 1

12y + 4x = xy \\  \\ (12 \times ( \frac{ - 2x}{3} )) + 4x = x \times ( \frac{ - 2x}{3} ) \\  \\ (4 \times ( - 2x)) + 4x =  \frac{ - 2 {x}^{2} }{3}  \\  \\  - 8x + 4x = \frac{ - 2 {x}^{2} }{3}  \\  \\ - 4x = \frac{ - 2 {x}^{2} }{3}  \\  \\ - 4x \times 3 =  - 2 {x}^{2}  \\  \\ 12x = 2 {x}^{2}  \\  \\  \frac{12x}{2}  =  {x}^{2}  \\  \\ 6x =  {x}^{2}  \\  \\6 =  \frac{ {x}^{2} }{x}  \\  \\ x = 6

Substitute x= 6 in equation 2.

y =  \frac{ - 2x}{3}  \\  \\ y =  \frac{ - 2 \times 6}{3}  \\  \\ y =   - 2 \times  \frac{6}{3}  \\  \\ y =  - 2 \times 2 \\  \\ y =  - 4

Consider the third equation from question,

y = ax - 4 \\  - 4 =(  a \times 6) - 4 \\  \\  - 4 + 4 = 6a \\  \\ 6a = 0 \\  \\ a = 0

The value of a is 0.

Answered by Anonymous
7

Answer:

Given :

Area of rhombus = 120 cm²

Length of diagonal = 8 cm

To find :

Length of another diagonal

According to the question,

\sf{ :  \implies Area \: of \: rhombus =  \dfrac{1}{2}  \times d _{1} \times d_{2}   }

 \\

 \sf  : \implies{ {120 \: cm}^{2} =  \dfrac{1}{2}   \times 8 \: cm \times x}

 \\

 \sf :  \implies{ {120 \: cm}^{2} \times 2 = 8 \: cm \times x }

 \\

 \sf :  \implies{ {240 \: cm}^{2}  = 8 \: cm \times x}

 \\

 \sf  : \implies{ \dfrac{240}{8}  \: cm = x}

 \\

 { \underline{ \boxed{  \sf  \pink{ :  \implies{   \bm3 \bm0 \: c m =x}}}}}

{ \therefore{ \underline{\sf{So \:,the \:  length \:  of \:  other \:  diagonal  \: is \:    3 0 \: cm}}}}

Similar questions