Math, asked by Anonymous, 8 months ago

solve this .

#dont spam
#wanted handwritten answer
#dont Google
#clear answer plz

NO SPAMMING !!​

Attachments:

Answers

Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We first memorize a formula on Trigonometric Inverse Function :

 \displaystyle \:  { \tan}^{ - 1} a \:  -   { \tan}^{ - 1} b \: =   { \tan}^{ - 1}  \:  \frac{a - b}{1 + ab}

where \: a \:,  b \:  > 0

TO PROVE

 \displaystyle \:  { \tan}^{ - 1}  \:  \frac{a - b}{1 + ab}  + { \tan}^{ - 1}  \:  \frac{b - c}{1 + bc}  + { \tan}^{ - 1}  \:  \frac{c - a}{1 + ca}  = 0

CALCULATION

Here

 \: a \:,  b \:  , \: c\:  > 0

Using the above mentioned formula

 \displaystyle \:  { \tan}^{ - 1}  \:  \frac{a - b}{1 + ab}   =   { \tan}^{ - 1} a \:  -   { \tan}^{ - 1} b \:

 \displaystyle \:   { \tan}^{ - 1}  \:  \frac{b - c}{1 + bc}     = { \tan}^{ - 1} b \:  -   { \tan}^{ - 1} c\:

 \displaystyle \: { \tan}^{ - 1}  \:  \frac{c - a}{1 + ca}   =   { \tan}^{ - 1} c \:  -   { \tan}^{ - 1} a \:

Hence

 \displaystyle \:  { \tan}^{ - 1}  \:  \frac{a - b}{1 + ab}  + { \tan}^{ - 1}  \:  \frac{b - c}{1 + bc}  + { \tan}^{ - 1}  \:  \frac{c - a}{1 + ca}

 = { \tan}^{ - 1} a \:  -   { \tan}^{ - 1} b \: +  { \tan}^{ - 1} b \:  -   { \tan}^{ - 1} c \: + { \tan}^{ - 1} c \:  -   { \tan}^{ - 1} a \:

 = 0

Hence proved

Answered by Anonymous
1

Answer:

FORMULA TO BE IMPLEMENTED

We first memorize a formula on Trigonometric Inverse Function :

\displaystyle \: { \tan}^{ - 1} a \: - { \tan}^{ - 1} b \: = { \tan}^{ - 1} \: \frac{a - b}{1 + ab}tan

−1

a−tan

−1

b=tan

−1

1+ab

a−b

where \: a \:, b \: > 0wherea,b>0

TO PROVE

\displaystyle \: { \tan}^{ - 1} \: \frac{a - b}{1 + ab} + { \tan}^{ - 1} \: \frac{b - c}{1 + bc} + { \tan}^{ - 1} \: \frac{c - a}{1 + ca} = 0tan

−1

1+ab

a−b

+tan

−1

1+bc

b−c

+tan

−1

1+ca

c−a

=0

CALCULATION

Here

\: a \:, b \: , \: c\: > 0a,b,c>0

Using the above mentioned formula

\displaystyle \: { \tan}^{ - 1} \: \frac{a - b}{1 + ab} = { \tan}^{ - 1} a \: - { \tan}^{ - 1} b \:tan

−1

1+ab

a−b

=tan

−1

a−tan

−1

b

\displaystyle \: { \tan}^{ - 1} \: \frac{b - c}{1 + bc} = { \tan}^{ - 1} b \: - { \tan}^{ - 1} c\:tan

−1

1+bc

b−c

=tan

−1

b−tan

−1

c

\displaystyle \: { \tan}^{ - 1} \: \frac{c - a}{1 + ca} = { \tan}^{ - 1} c \: - { \tan}^{ - 1} a \:tan

−1

1+ca

c−a

=tan

−1

c−tan

−1

a

Hence

\displaystyle \: { \tan}^{ - 1} \: \frac{a - b}{1 + ab} + { \tan}^{ - 1} \: \frac{b - c}{1 + bc} + { \tan}^{ - 1} \: \frac{c - a}{1 + ca}tan

−1

1+ab

a−b

+tan

−1

1+bc

b−c

+tan

−1

1+ca

c−a

= { \tan}^{ - 1} a \: - { \tan}^{ - 1} b \: + { \tan}^{ - 1} b \: - { \tan}^{ - 1} c \: + { \tan}^{ - 1} c \: - { \tan}^{ - 1} a \:=tan

−1

a−tan

−1

b+tan

−1

b−tan

−1

c+tan

−1

c−tan

−1

a

= 0=0

Hence proved

Similar questions