solve this .
#dont spam
#wanted handwritten answer
#dont Google
#clear answer plz
NO SPAMMING !!
Answers
FORMULA TO BE IMPLEMENTED
We first memorize a formula on Trigonometric Inverse Function :
TO PROVE
CALCULATION
Here
Using the above mentioned formula
Hence
Hence proved
Answer:
FORMULA TO BE IMPLEMENTED
We first memorize a formula on Trigonometric Inverse Function :
\displaystyle \: { \tan}^{ - 1} a \: - { \tan}^{ - 1} b \: = { \tan}^{ - 1} \: \frac{a - b}{1 + ab}tan
−1
a−tan
−1
b=tan
−1
1+ab
a−b
where \: a \:, b \: > 0wherea,b>0
TO PROVE
\displaystyle \: { \tan}^{ - 1} \: \frac{a - b}{1 + ab} + { \tan}^{ - 1} \: \frac{b - c}{1 + bc} + { \tan}^{ - 1} \: \frac{c - a}{1 + ca} = 0tan
−1
1+ab
a−b
+tan
−1
1+bc
b−c
+tan
−1
1+ca
c−a
=0
CALCULATION
Here
\: a \:, b \: , \: c\: > 0a,b,c>0
Using the above mentioned formula
\displaystyle \: { \tan}^{ - 1} \: \frac{a - b}{1 + ab} = { \tan}^{ - 1} a \: - { \tan}^{ - 1} b \:tan
−1
1+ab
a−b
=tan
−1
a−tan
−1
b
\displaystyle \: { \tan}^{ - 1} \: \frac{b - c}{1 + bc} = { \tan}^{ - 1} b \: - { \tan}^{ - 1} c\:tan
−1
1+bc
b−c
=tan
−1
b−tan
−1
c
\displaystyle \: { \tan}^{ - 1} \: \frac{c - a}{1 + ca} = { \tan}^{ - 1} c \: - { \tan}^{ - 1} a \:tan
−1
1+ca
c−a
=tan
−1
c−tan
−1
a
Hence
\displaystyle \: { \tan}^{ - 1} \: \frac{a - b}{1 + ab} + { \tan}^{ - 1} \: \frac{b - c}{1 + bc} + { \tan}^{ - 1} \: \frac{c - a}{1 + ca}tan
−1
1+ab
a−b
+tan
−1
1+bc
b−c
+tan
−1
1+ca
c−a
= { \tan}^{ - 1} a \: - { \tan}^{ - 1} b \: + { \tan}^{ - 1} b \: - { \tan}^{ - 1} c \: + { \tan}^{ - 1} c \: - { \tan}^{ - 1} a \:=tan
−1
a−tan
−1
b+tan
−1
b−tan
−1
c+tan
−1
c−tan
−1
a
= 0=0
Hence proved