Math, asked by antrasharma97, 10 months ago

Solve this easy question buddies .

\large{QUESTION}

(5,10) , (-15,15) and (5,15) are the coordinates of vertices A,B,C of triangleABC such that AD : PD = 2:3 . Then ratio of areas of triangle PBC and triangle ABC is
(a) 2:3
(b) 3:4
(c) 3:5
(d) 4:5


may I know kisko kitna aata h xD

balko spam sirf spammed questions pe krte h is lia yha pe answer dene ka sirf ​

Attachments:

Answers

Answered by BRAINLYADDICTOR
75

★FIND:

\bold{The\: ratio\: of\:areas \:of\: (triangle) \:PBC \:and\: \\(triangle)\: ABC\:(PBC:ABC)} =?

★GIVEN,

\bold{A(5,10) ,B(-15,15) and C(5,15)}

\bold{The\: ratio\: of\: AD:PD=2:3}

\bold{AD/PD=2/3}

\bold{AD=2 \:and \:PD=3}

★SOLUTION:

\bold{Area\:of\: triangle\: ABC=1/2×AD×BC}

➡️1/2(2)×BC

➡️BC

\bold{Area \:of\: triangle \:PBC=1/2×PD×BC}

➡️1/2(3)×BC

➡️3/2(BC)

★NOW,

  =  > \frac{area \: of \: triangle \: ABC}{area \: of \: triangl \: PBC}  =  \frac{BC}{3/2BC}  \\  =  >  \frac{area \: of \: triangle \: ABC}{area \: of \: triangl \: PBC}  =  \frac{2BC}{3BC}  \\  =  > \frac{area \: of \: triangle \: ABC}{area \: of \: triangl \: PBC} = 2/3

Area of ∆ABC:Area of ∆PBC= 2:3

★So,

Option;a) 2:3

Answered by asritadevi2344
25


\large{Answer}
Area of ∆ABC:Area of ∆PBC= 2:3

★So,

Option;a) 2:3

Similar questions