Math, asked by RIZXTAR, 11 months ago

SOLVE THIS elimination equation BY USING KREMAR METHOD. ​

Attachments:

Answers

Answered by Anonymous
64

refer to attachment ...............

Attachments:
Answered by rajsingh24
103

Answer:-

▬▬▬▬▬▬▬▬▬▬▬▬

\tt{3x-4y=10 ---------(1)}

\tt{4x+3y=5-----------(2)}

\tt{here,  a1=3 , b1= -4 , c =10} \tt{and\: a2=4 , b2=3 , c2=5.}

d =   \: \large\: |a1 \:  \:  \:b1  | \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \: |a2 \:  \:  \:b2  |  \:

.°.  \: \large \: |3 \:  \:  \:  - 4|  \\ \large\:  \:  \:  \:  \:  \:  \:  \:  |4 \:  \:  \:  \:  \:  \:  \: 3 \:   |  \: \\  .°. = (3×3) -[(-4)×4] \\ </p><p>    = 9+16 \\ </p><p>    =\red{25} \:

▬▬▬▬▬▬▬▬▬▬▬▬

dx =   \: \large \: |c1 \:  \:  \:b1  | \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \large \: \:  \:  \:  |c1 \:  \:  \:b2  |   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:       \: \large \: |10 \:  \:  \: - 4  | \\  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\: | \: </strong><strong>\</strong><strong>:</strong><strong>\</strong><strong>:</strong><strong>5\:  \:  \: - 3  | \\  \:  = (10 \times 3) - ( - 4 \times 5) \\  = 30 + 20 \\  =</strong><strong>\</strong><strong>red{</strong><strong> 50</strong><strong>}</strong></p><p><strong>\\ dy =   \: \large \: |a1 \:  \:  \:c1  | \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large \: |a2 \:  \:  \:c2 | \:  \\ </strong><strong> </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>\</strong><strong>:</strong><strong> \: \large \: |3 \:  \:  \:  \: 10\:    |  \:  \\   \: \large \:  \:  \:  | \: 4 \:  \:  \:  \:  \:  \: 5 \:  \:  |  \\ =  (3 \times 5) - (10 \times 4) \\  = 15 - 40 \\  =  </strong><strong>\</strong><strong>red{</strong><strong>- 25 </strong><strong>}</strong><strong>\\ </strong><strong>\</strong><strong>bigstar</strong><strong>\large{according\: to \: kremer  \: method</strong><strong>:</strong><strong>-</strong><strong>\: \: } \\ x =  \frac{dx}{d}  \:  \:  \:  \:  \: or \:  \:  \: y =  \frac{dy}{d}  \\ x =  \frac{\cancel{50}}{\cancel{25}} \:  \:  \: or \:  \:  \:  \: y =  \frac{ \cancel{- 25}}{\cancel{25}} \\\red{ x = 2} \: \:  \:  \: or \:  \:  \:  \red{y =  - 1}

.°. ANSWER :- (2,-1)

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions