Math, asked by yashtiwari279, 2 months ago

solve this equation :- 1/5(2x+1) - 1/3 (x-2)=x - 24⅓. only for moderators and stars.
spam=100 report
scam = 10000000000 report
best of luck ​

Answers

Answered by ImperialGladiator
14

Answer:

  • 27

Explanation :

Given equation,

\implies \dfrac{1}{5} (2x + 1) -  \dfrac{1}{3} (x - 2) = x - 24 \frac{1}{3}  \\

Solving for x

\implies  \dfrac{2x + 1}{5}  -  \dfrac{x - 2}{3}  = x -  \frac{73}{3}  \\

\implies  \dfrac{3(2x + 1) - 5(x - 2)}{15}  =  \dfrac{3x - 73}{3}  \\

\implies  \dfrac{6x + 3 - 5x + 10}{15}  =  \dfrac{3x - 73}{3}  \\

\implies \dfrac{x + 13}{15}  =  \dfrac{3x - 73}{3}  \\

\implies 3(x + 13) = 15(3x - 73) \\

\implies 3x + 39 = 45x - 1095 \\

\implies 39 + 1095 = 45x - 3x \\

\implies 1134 = 42x

 \implies\dfrac{1134}{42}  = x \\

\implies 27 = x

The value of x is 27

Answered by Anonymous
68

\sf{ \underline \green{Given \:  equation  \: : }}

 \rightarrow \:  { \frac{1}{5} (2x + 1) -  \frac{1}{3} (x - 2) = x - 24 \frac{1}{3} }

 \sf{ \underline \green{Solution \:  :}}

  \large\sf{ \qquad : \implies  \frac{2x + 1}{5}  -  \frac{x - 2}{3}  = x -  \frac{73}{3} }

   \large \sf{  \qquad :  \implies\frac{3(2x \:  +  \: 1)  \: - \:  5(x  \: - \:  2)}{15}  =  \frac{3x  \: -  \: 73}{3} }

\large\sf{ \qquad : \implies \:  \frac{6x  \: +  \: 3 \:  -  \: 5x   \: + \:  10}{15} =  \frac{3x - 73}{3}  }

\large\sf{ \qquad : \implies \:  \frac{x + 13}{15}  = \frac{3x - 73}{3} }

\sf{ \qquad : \implies \: 3 \: (x + 13) = 15(3x - 73)}

\sf{ \qquad : \implies \: 3x + 39 = 45x - 1095}

\sf{ \qquad : \implies \: 39 + 1095 = 45x - 3x}

\sf{ \qquad : \implies \: 1134 = 42x}

 \sf{ \qquad : \implies \: x =  \cancel \frac{1134}{42} }

\sf{ \qquad : \implies \: x = 27}

Similar questions