Math, asked by yashtiwari279, 2 months ago

solve this equation :- 1/5(2x+1) - 1/3 (x-2)=x - 24⅓. only for moderators and stars.
spam=100 report
scam = 10000000000 report
best of luck​

Answers

Answered by VεnusVεronίcα
50

  \tt \qquad :  \implies\:  \dfrac{1}{5} \:  (2x + 1) -  \dfrac{1}{3} \:  (x - 2) = x - (24) \:  \dfrac{1}{3}

\\  \\  \\

\qquad \tt  : \implies \:  \dfrac{2x + 1}{5}  -  \dfrac{x - 2}{3}  = x - ( 24)  \: \cancel \dfrac{1}{ 3}

 \\  \\  \\

\qquad \tt :  \implies \:  \dfrac{3 \: (2x + 1) - 3 \: (x - 2)}{15}  = x - 8

\\  \\  \\

 \qquad {\sf :  \implies \:  \because \: LCM \: of \: 5 \: and \: 3 \: is \: 15.}

\\  \\  \\

 \qquad \tt :  \implies \:  \dfrac{6x + 1 - 3x + 2}{15}  = x - 8

\\  \\  \\

 \tt \qquad  : \implies \:  \dfrac{6x - 3x + 1 + 2}{15}  = x - 8

 \\  \\  \\

 \tt\qquad : \implies \:  \dfrac{3x + 3}{15}  = x - 8

\\  \\  \\

 \tt \qquad :  \implies \:  \dfrac{3 \: (x + 1)}{3 \: (5)}  = x - 8

\\  \\  \\

  \tt \qquad  : \implies \:  \dfrac{ \cancel3 \: (x + 1)}{ \cancel3 \: (5)}  =  \dfrac{x - 8}{1}

\\  \\  \\

\tt \qquad  :  \implies \:  \dfrac{x + 1}{5}  =  \dfrac{x - 8}{1}

 \\  \\  \\

\tt \qquad :  \implies \: x + 1 = 5 \: (x - 8)

\\  \\  \\

\tt \qquad  : \implies \: x + 1 = 5x - 40

\\  \\  \\

 \tt  \qquad  : \implies \:  x - 5x =  - 40 - 1

\\  \\  \\

  \tt \qquad :  \implies \:  - 4x =  - 41

\\  \\  \\

\tt \qquad :  \implies \: x =  \dfrac{41}{4}

\\  \\  \\

\qquad :\implies\large{ \sf~Verification :}

  \\  \\  \\

{\sf \qquad :  \implies \: Taking ~ the \: simplest \: form \: of \: the \: equation : }

 \\  \\  \\

\tt \qquad :  \implies \: x + 1 = 5x - 40

 \\  \\  \\

 \tt \qquad:  \implies \:  \bigg \lgroup \dfrac{ 41}{4}  \bigg \rgroup + 1 = 5 \:  \bigg \lgroup \dfrac{41}{4}  \bigg \rgroup - 40

 \\  \\  \\

  \tt \qquad :  \implies \:  \dfrac{41 + 4}{4}  =  \dfrac{205}{4}  - 40

 \\  \\  \\

   \tt \qquad :  \implies \:  \dfrac{45}{4}  =  \dfrac{205 - 160}{4}

\\  \\  \\

\tt \qquad :  \implies \:  \dfrac{45}{4}  =  \dfrac{45}{4}

\\  \\  \\

 {\sf \qquad :  \implies \: Hence, \: verified!}

Similar questions