Math, asked by anuj754461, 3 months ago

solve this equation.​

Attachments:

Answers

Answered by rai087409
0

Answer:

Formula lagao

Step-by-step explanation:

toh apne ap aa jayega

Answered by Flaunt
198

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto  { \bigg( \dfrac{3}{2} \bigg )}^{6} \div  { \bigg( \dfrac{3}{2} \bigg )}^{2n + 1  } \times { \bigg( \dfrac{3}{2} \bigg )}^{ - 3} = 1

Concepts

When bases are and powers are different then their powers gets added during multiplication and gets substracted during division.

 \sf \boxed{ \bold{\dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }}

 \sf \boxed{ \bold{ {a}^{m}  \times  {a}^{n}  =  {a}^{m +   n}} }

\sf \longmapsto{ \bigg( \dfrac{3}{2} \bigg )}^{6 - (2n + 1)} \times { \bigg( \dfrac{3}{2} \bigg )}^{ - 3} = 1

\sf \longmapsto{ \bigg( \dfrac{3}{2} \bigg )}^{6 - 2n - 1} \times { \bigg( \dfrac{3}{2} \bigg )}^{ - 3} = 1

\sf \longmapsto{ \bigg( \dfrac{3}{2} \bigg )}^{5 - 2n} \times { \bigg( \dfrac{3}{2} \bigg )}^{ - 3} = 1

Now,here bases are same so ,their powers gets added:

\sf \longmapsto{ \bigg( \dfrac{3}{2} \bigg )}^{5 - 2n + ( - 3)} = 1

\sf \longmapsto{ \bigg( \dfrac{3}{2} \bigg )}^{2 - 2n} = 1

 \sf \boxed{\bold{ {a}^{0}  = 1}}

\sf \longmapsto{ \bigg( \dfrac{3}{2} \bigg )}^{2 - 2n} = { \bigg( \dfrac{3}{2} \bigg )}^{0}

Now ,comparing with the coefficient to both sides :

\sf \longmapsto2 - 2n = 0

\sf \longmapsto - 2n =  - 2

\sf \longmapsto2n = 2

 \sf \boxed{\bold{n = {\red{1}}}}

Similar questions