Math, asked by anuj754461, 4 months ago

solve this equation.​

Attachments:

Answers

Answered by ashirvadpandey123
2

n=1.

We'll follow the BODMAS rule to determine which operation shall be given priority.

Then we'll convert all bases in same format

Next we will add up the indices/powers of same bases to get single simplified term.

Finally we will compare both sides of the equation to get the value of n.

Attachments:
Answered by tennetiraj86
4

Answer:

given \: that \:  -  \\ (  { \frac{3}{2} )}^{6}  \div  { (\frac{3}{2}) }^{(2n + 1)}  \times  {( \frac{3}{2} )}^{ - 3}  = 1 \\   \\ to \: solve \: this \: using \: bodmas \: rule \:  \\  = > (( { \frac{3 }{2} )}^{6}  \div  { (\frac{3}{2}) }^{(2n + 1)} ) \times  ( { \frac{3}{2}) }^{ - 3}  = 1 \\ we \: know \: that \:   \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \\  \:  \\  =  >  {( \frac{3}{2} )}^{(6 - 2n - 1)}   \times  { (\frac{3}{2}) }^{ - 3}  = 1 \\  =  >   { (\frac{3}{2} )}^{(5 - 2n)}  \times  { (\frac{3}{2}) }^{ - 3}  = 1  \:    \\ we \: know \: that \:  {a}^{m}  \times  {a}^{n}  =  {a}^{(m + n)}  \\  \:  =  >  {( \frac{3}{2}) }^{(5 - 2n - 3)}  = 1 \\  \:  =  >  { (\frac{3}{2} )}^{(2 - 2n)}  = 1 \\  \:  =  >  { (\frac{3}{2} }^{(2 - 2n)}  =  { (\frac{3}{2}) }^{0}  \\  \:  (since \:  {a}^{0}  = 1) \\  \: if \: bases \: are \: equal \: then \: exponents \: must \: be \: equal. \:  \\  =  > 2 - 2n = 0 \:  \\  =  > 2n = 2 \:  \\  =  > n =  \frac{2}{2}  \\  \:  =  > n = 1 \\  \: the \: value \: of \: n = 1

Attachments:
Similar questions