Math, asked by jugnusingh1978, 14 days ago

solve this equation​

Attachments:

Answers

Answered by DeeznutzUwU
1

       \text{\huge \underline{Answer:}}

       \text{The given equation is:}\\

       \dfrac{t}{2} + \dfrac{t-2}{3} = \dfrac{4 + t}{5}

       \text{Taking LCM on L.H.S and simplifying...}

\implies \dfrac{3t}{6} + \dfrac{2(t-2)}{6} = \dfrac{4 + t}{5}

\implies \dfrac{3t+2(t-2)}{6} = \dfrac{4 + t}{5}

\implies \dfrac{3t+2t-4}{6} = \dfrac{4 + t}{5}

\implies \dfrac{5t-4}{6} = \dfrac{4 + t}{5}

       \text{Cross multiplying..}

\implies 5(5t-4) = 6(4 + t)

\implies 25t-20 = 24 + 6t

\implies 25t-20 - 24 - 6t = 0

\implies 19t - 44 = 0

\implies 19t = 44

\implies \boxed{\boxed{t = \dfrac{44}{19}}}

Answered by shashi1979bala
1

\huge\mathcal{\fcolorbox{aqua}{azure}{\red{❖Solution}}}

\large\blue{\sf{We~have,}}

 \frac{3t + 2t - 4}{6}  =  \frac{4 + t}{5}

 \frac {5t - 4}{6} =  \frac{4 + t}{5}

\large\blue{\sf{By~the~method~of~cross~multiplication}}

\large\blue{\sf{5~(5t-4)~=~6~(4+t)~}}

\large\blue{\sf{25t~-~20~=~24~+~6t}}

\large\blue{\sf{19t~=~44}}

\large\orange{\sf{t~=~\frac{44}{9}~}}

Similar questions