Math, asked by palaksaxena4054, 18 days ago

solve this equation:-​

Attachments:

Answers

Answered by NITESH761
1

Answer:

\tt  x = 2.66

Step-by-step explanation:

We have,

\tt 8 \bigg( \dfrac{6x}{9} -3 \bigg) - \dfrac{2}{3} \bigg( \dfrac{5}{9} + 6x \bigg)= \dfrac{2}{4}

\tt 8 \bigg( \dfrac{2x}{3} -3 \bigg) - \dfrac{2}{3} \bigg( \dfrac{5}{9} + 6x \bigg)= \dfrac{1}{2}

\tt 8 \bigg( \dfrac{2x-9}{3} \bigg) - \dfrac{2}{3} \bigg( \dfrac{5+54x}{9}  \bigg)= \dfrac{1}{2}

\tt  \dfrac{8(2x-9)}{3}  -  \dfrac{2(5+54x)}{3×9}  = \dfrac{1}{2}

\tt  \dfrac{8(2x-9)}{3}  -  \dfrac{2(5+54x)}{27}  = \dfrac{1}{2}

\tt  \dfrac{72(2x-9)-2(5+54x)}{27}      = \dfrac{1}{2}

\tt  72(2x-9)-2(5+54x)    = \dfrac{27}{2}

\tt  144x-648-10+108x     = \dfrac{27}{2}

\tt  252x-658     = \dfrac{27}{2}

\tt  252x = \dfrac{27}{2}+658

\tt  252x = \dfrac{27+1316}{2}

\tt  252x = \dfrac{1343}{2}

\tt  x = \dfrac{1343}{2×252}

\tt  x = \dfrac{1343}{504}

\tt  x = 2.66

Similar questions