Math, asked by guddid684, 1 day ago

solve this equation ​

Attachments:

Answers

Answered by Anonymous
3

Given:

  •  \sf a =  \dfrac{ \sqrt{7}  -  \sqrt{6} }{ \sqrt{7}  +  \sqrt{6} }
  •  \sf b = \dfrac{ \sqrt{7}  + \sqrt{6} }{ \sqrt{7}  -  \sqrt{6} }

To find:

The value of a² + b² + ab

Solution:

Let's firstly simplify the values of a and b by rationalising the denominator.

‎ ‎ ‎

 \tt \implies a =  \dfrac{ \sqrt{7}  -  \sqrt{6} }{ \sqrt{7}  +  \sqrt{6} }

 \tt \implies a =  \dfrac{ \sqrt{7}  -  \sqrt{6} }{ \sqrt{7}  +  \sqrt{6} }  \times  \dfrac{ \sqrt{7}  -   \sqrt{6}  }{ \sqrt{7}  -   \sqrt{6}  }

 \tt \implies a =  \dfrac{( \sqrt{7}  -  \sqrt{6})^{2}  }{ (\sqrt{7}  +  \sqrt{6})(\sqrt{7}  -   \sqrt{6} ) }

‎ ‎ ‎

Now use the following identities:

  • \boxed{\sf (A+B)(A-B) = A^2 - B^2 }
  • \boxed{\sf (A-B)^2 = A^2 + B^2 - 2AB}

‎ ‎ ‎

 \tt \implies a =  \dfrac{( 7 + 6 - 2 \sqrt{42} )}{7 - 6 }

 \underline{ \tt \implies a  = 13- 2 \sqrt{42}}

‎ ‎ ‎

Similarly, rationalising b.

 \tt  \implies b = \dfrac{ \sqrt{7}  + \sqrt{6} }{ \sqrt{7}  -  \sqrt{6} }

 \tt  \implies b = \dfrac{ \sqrt{7}  + \sqrt{6} }{ \sqrt{7}  -  \sqrt{6} }  \times  \dfrac{ \sqrt{7} +  \sqrt{6}  }{ \sqrt{7}  +  \sqrt{6} }

 \tt  \implies b = \dfrac{ (\sqrt{7}  + \sqrt{6})^2}{ (\sqrt{7}  -  \sqrt{6})(\sqrt{7}  +  \sqrt{6}) }

‎ ‎ ‎

Now use the following identities:

  • \boxed{\sf (A+B)(A-B) = A^2 - B^2 }
  • \boxed{\sf (A+B)^2 = A^2 + B^2 + 2AB}

‎ ‎ ‎

 \tt  \implies b = \dfrac{ 7 + 6 + 2 \sqrt{42}}{7 - 6}

 \underline {\tt  \implies b =13 + 2 \sqrt{42}}

‎ ‎ ‎

So the required value of given expression is given by:

 \tt \implies  {a}^{2}  +  {b}^{2}  + ab

 \tt \implies  {(13 - 2 \sqrt{42}) }^{2}  +  {(13 + 2 \sqrt{42}) }^{2}  + (13 - 2 \sqrt{42}) (13 + 2 \sqrt{42})

‎ ‎ ‎

Now use the following identities:

  • \boxed{\sf (A-B)^2 = A^2 + B^2 - 2AB}
  • \boxed{\sf (A+B)(A-B) = A^2 - B^2 }
  • \boxed{\sf (A+B)^2 = A^2 + B^2 + 2AB}

‎ ‎ ‎

 \tt \implies(169 + 84 - 52 \sqrt{42} ) + (169 + 84  + 52 \sqrt{42} ) +  169- 84

 \tt \implies169 + 84 + 169 + 84 + 85

 \tt \implies 591

So the required answer is 591.

Similar questions