Solve this equation:a²(x-b)/a-b-x²=b²(a-x)/b-a
Answers
Answered by
2
Answer:
a²/x-b + b²/x-a =a+b
Let’s x<>a and x<>b
a²(x-a) + b²(x-b) =(a+b)(x-a)(x-b)
a²x-a^3+ b²x-b^3 =ax^2 - a^2x-abx +a^2*b+bx^2 -abx - b^2x +a*b^2
(a+b)x^2 - 2(a^2+ab+b^2)x+(a^3+a^2*b+a*b^2+b^3)=0
Let’s a+b<>0
x1,2={2(a^2+ab+b^2)+-sqrt[4(a^2+ab+b^2)^2–4(a+b)(a^3+a^2*b+a*b^2+b^3)]}/[2(a+b)]=
={2(a^2+ab+b^2)+-sqrt[4(a^2*b^2)]}/[2(a+b)] =
=(a^2+ab+b^2)+-sqrt(a^2*b^2)/(a+b)=
=(a^2+ab+b^2+-ab)/(a+b)
x1=a+b
x2=(a^2+b^2)/(a+b)
If a+b=0 i.e. b=-a then
a²/x+a + a²/x-a =0
x+a+x-a=2x=0
x=0
So
If a+b=0 then x=0
else
x1=a+b
x2=(a^2+b^2)/(a+b)
Step-by-step explanation:
please mark me as a brainlist please
Answered by
1
Answer:
which class in are you in
Similar questions