Math, asked by Anonymous, 4 days ago

Solve this equation & verify your answer :

 \frac{ \frac{2}{5}x  + 3}{ \frac{1}{3}x - 1 }  =  \frac{3}{5}  \\

Answers

Answered by call2nujhat
2

Answer:

3(x−3)=5(2x+1)

⇒  3x−9=10x+5

⇒   3x−10x=5+9

⇒   −7x=14

⇒   −x=714

⇒   x=−2

Step-by-step explanation:

3(x−3)=5(2x+1)

⇒  3x−9=10x+5

⇒   3x−10x=5+9

⇒   −7x=14

⇒   −x=714

⇒   x=−2

Answered by msjjesvin
2

Answer:

x = -18

Step-by-step explanation:

Step 1: Cross-multiply.

\frac{\frac{2}{5} x+3}{\frac{1}{3}x-1 }=\frac{3}{5} \\(\frac{2}{5} x+3)*5=3*(\frac{1}{3}x-1 )\\2x+15=x-3\\

Step 2: Subtract x from both sides.

2x+15-x=x-3-x\\x+15=-3

Subtracting 15 from both sides.

x+15-15=-3-15\\x=-18

Answer:

x=-18

Verification:

\frac{\frac{2}{5}x+3 }{\frac{1}{3}x-1 }=\frac{3}{5}\\ \frac{\frac{2}{5}*(-18)+3 }{\frac{1}{3}*(-18)-1 }=\frac{3}{5}\\ \frac{\frac{-36}{5}+3 }{(-6)-1 }=\frac{3}{5}\\ \frac{\frac{21}{5} }{(-7) }=\frac{3}{5}\\\frac{21}{5}*\frac{1}{-7}=\frac{3}{5}\\  \frac{3}{5} =  \frac{3}{5}

If you find this answer helpful please mark me as the brainliest

Similar questions