Math, asked by hmanface, 1 year ago

Solve this equation;
If sin x = 3/5 and x is acute find the value of tan2x, cos2x and sin2x

Answers

Answered by Anonymous
8

Answer:

tan 2x = 24 / 7

cos 2x = 7 / 25

sin 2x = 24 / 25

Step-by-step explanation:

sin x = opposite / hypotenuse = 3 / 5

=> x is an angle in a 3 : 4 : 5 right angle triangle

=> cos x = 4 / 5  and  tan x = 3 / 4

tan 2x = ( 2 tan x ) / ( 1 - tan² x )

          = ( 2 × 3/4 ) / ( 1 - (3/4)² )

          = ( 3/2 ) / ( 1 - 9/16 )

          = ( 3×8 ) / ( 16 - 9 )     [ multiplied numerator and denominator by 16 ]

          = 24 / 7

cos 2x = cos² x - sin² x

          = (4/5)² - (3/5)²

          = 16/25 - 9/25

          = 7 / 25

sin 2x = 2 cos x sin x

         = 2 × (4/5) × (3/5)

         = 24 / 25

Similar questions