Math, asked by sneha0311, 1 month ago

Solve this equations for x and y
x / a + y / b = a + b
x / a² + y / b² = 2 ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}  = a \:  +  \: b

and

\rm :\longmapsto\:\dfrac{x}{ {a}^{2} }  + \dfrac{y}{ {b}^{2} }  =2

can be rewritten as

\rm :\longmapsto\:\dfrac{bx + ay}{ab}  = a + b

\rm :\longmapsto\:bx + ay =  {ba}^{2}  +  {ab}^{2}  -  -  - (1)

and

\rm :\longmapsto\:\dfrac{ {xb}^{2}  +  {ya}^{2} }{ {a}^{2}  {b}^{2} } = 2

\rm :\longmapsto\:{xb}^{2}  +  {ya}^{2} = 2{ {a}^{2}  {b}^{2} } -  -  -  - (2)

So, we have two equations as

\rm :\longmapsto\:bx + ay =  {ba}^{2}  +  {ab}^{2}  -  -  - (1)

and

\rm :\longmapsto\:{xb}^{2}  +  {ya}^{2} = 2{ {a}^{2}  {b}^{2} } -  -  -  - (2)

Now, multiply equation (1), by b, we have

\rm :\longmapsto\: {b}^{2} x + aby =   {b}^{2} {a}^{2}  +  {ab}^{3}  -  -  - (3)

On Subtracting equation (3) from (2), we get

\rm :\longmapsto\: {a}^{2}y - aby =  {a}^{2} {b}^{2} -  {ab}^{3}

\rm :\longmapsto\:ay(a - b) = a {b}^{2}(a - b)

\bf\implies \:y =  {b}^{2}

On substituting the value of y in equation (2), we get

\rm :\longmapsto\: {b}^{2}x +  {a}^{2} {b}^{2} = 2 {a}^{2} {b}^{2}

\rm :\longmapsto\: {b}^{2}x = {a}^{2} {b}^{2}

\bf\implies \:x =  {a}^{2}

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: Hence-\begin{cases} &\sf{x =  {a}^{2} } \\ &\sf{y =  {b}^{2} } \end{cases}\end{gathered}\end{gathered}

Verification :-

Consider, Equation

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}  = a \:  +  \: b

On substituting the values of x and y, we get

\rm :\longmapsto\:\dfrac{ {a}^{2} }{a}  + \dfrac{ {b}^{2} }{b}  = a \:  +  \: b

\rm :\longmapsto\:a + b = a + b

Hence, Verified

Consider, Equation (2)

\rm :\longmapsto\:\dfrac{x}{ {a}^{2} }  + \dfrac{y}{ {b}^{2} }  =2

On substituting the values of x and y, we get

\rm :\longmapsto\:\dfrac{ {a}^{2} }{ {a}^{2} }  + \dfrac{ {b}^{2} }{ {b}^{2} }  =2

\rm :\longmapsto\:1 + 1 = 2

\rm :\longmapsto\:2 = 2

Hence, Verified


amitkumar44481: Great :-)
Similar questions