Solve This:- Explain in briefly \begin{gathered} \\ \rm \frac{1-sin^2\frac{\pi}{6}}{1+sin^2\frac{\pi}{4}}\times \frac{cos^2\frac{\pi}{3}+cos^2\frac{\pi}{6}}{csc^2\frac{\pi}{2}-cot^2\frac{\pi}{2}} \div \left( sin\frac{\pi}{3}tan\frac{\pi}{6} \right)+\left( sec^2\frac{\pi}{6}-tan^2\frac{\pi}{6} \right)\\\end{gathered}1+sin24π1−sin26π×csc22π−cot22πcos23π+cos26π÷(sin3πtan6π)+(sec26π−tan26π) No Spam
Answers
Answer:
please mark me brainliest
Step-by-step explanation:
Answer
\begin{gathered}\rm \frac{1-sin^2\frac{\pi}{6}}{1+sin^2\frac{\pi}{4}}\times \frac{cos^2\frac{\pi}{3}+cos^2\frac{\pi}{6}}{csc^2\frac{\pi}{2}-cot^2\frac{\pi}{2}} \div \left( sin\frac{\pi}{3}tan\frac{\pi}{6} \right)+\left( sec^2\frac{\pi}{6}-tan^2\frac{\pi}{6} \right)\\\\:\longrightarrow \rm \frac{1-sin^2(30)}{1+sin^2(45)}\times \frac{cos^2(60)+cos^2(30)}{csc^2(90)-cot^2(90)}\div (sin(60).tan(30)+(sec^2(30)-tan^2(30))\end{gathered}
1+sin
2
4
π
1−sin
2
6
π
×
csc
2
2
π
−cot
2
2
π
cos
2
3
π
+cos
2
6
π
÷(sin
3
π
tan
6
π
)+(sec
2
6
π
−tan
2
6
π
)
:⟶
1+sin
2
(45)
1−sin
2
(30)
×
csc
2
(90)−cot
2
(90)
cos
2
(60)+cos
2
(30)
÷(sin(60).tan(30)+(sec
2
(30)−tan
2
(30))
\begin{gathered} \large\sf:\to \rm \frac{1-\frac{1}{4}}{1+\frac{1}{2}}\times \frac{\frac{1}{4}+\frac{3}{4}}{1-0}\div \bigg(\frac{\sqrt{3}}{2}.\frac{1}{\sqrt{3}} \bigg)+ \bigg(\frac{4}{3}-\frac{1}{3} \bigg)\\\\\large \sf:\longrightarrow \: \rm \frac{\frac{3}{4}}{\frac{3}{2}}\times \frac{1}{1}\div \bigg( \: \: \frac{1}{2} \: \: \bigg)+(1)\\\\:\large \longrightarrow\rm \frac{1}{2}\times (2)+1\\\\:\to\large \rm 1+1\\\\:\to\large \rm 2\end{gathered}
:→
1+
2
1
1−
4
1
×
1−0
4
1
+
4
3
÷(
2
3
.
3
1
)+(
3
4
−
3
1
)
:⟶
2
3
4
3
×
1
1
÷(
2
1
)+(1)
:⟶
2
1
×(2)+1
:→1+1
:→2
Danger points
→ Be aware of Bodmas rule
where:-
B denotes Brackets
O denotes of
D denotes division
M denotes multiplication
A denotes addition
S denotes subtraction
Answer: