Math, asked by shinchan8796, 1 year ago


Solve this...fast........

Attachments:

Answers

Answered by rakeshmohata
2

Answer:

=> ln(1+sin²x) + c

where c is an arbitrary constant

Step-by-step explanation:

 \int \frac{ \sin(2x) }{1 +  \sin {}^{2} (x) } dx \\  \\  \bf \: let \: (1 +  { \sin }^{2} (x)) \: =\: z  \\  \\  \underline{ \bf \: differentiating \:  \: both \:  \: sides \:  \: we \:  \: get} \\  \\  = =  >  \frac{d(1 +  \sin {}^{2} (x) )}{dx}  =  \frac{dz}{dx} \\  \\  =  >  \: 2 \sin(x)  \cos(x). dx = dz \\  \\  \bf \underline{ note =  > 2sinxcosx =  \sin(2x) } \\  \\  =  >  \sin(2x) dx = dz \\  \\  \bf \: now \: substituting \: it \: in \: the \: question \: we \: get \\  \\  =  >  \int \frac{ \sin(2x) }{1 +  \sin {}^{2} (x) }  \\  \\   = \int \:  \frac{dz}{z}  \\  \\  =  ln(z) + c  \\  \\  = \bf{ \underline{  ln(1 +  \sin {}^{2} (x) ) \:  + c }}

Similar questions